Monetary policy of the Bank of Russia under diagnostic expectations
https://doi.org/10.32609/0042-8736-2026-1-66-79
Abstract
The paper examines how diagnostic expectations — that is, agents’ excessive reaction to recent information — affect the effectiveness of monetary policy in the Russian economy. To investigate this, we rely on a DSGE model that allows for an alternative mechanism of expectation formation. We calibrate the model to Russian macroeconomic data using Bayesian parameter estimation methods. Our results are as follows: (1) the model incorporating diagnostic expectations fits Russian data better than the model based on full rationality of economic agents; (2) diagnostic expectations alter the operation of the monetary policy transmission mechanism, amplifying inflationary pressures when the key policy rate is reduced; (3) if this change is ignored, relying on the (inaccurate) assumption of rational expectations, monetary easing may lead to excessively high inflation. In the paper, we show how the monetary policy rule should be refined to avoid this undesirable effect.
About the Authors
Sofya I. KolesnikRussian Federation
Moscow
Timur R. Magzhanov
Russian Federation
Moscow
Philipp S. Kartaev
Russian Federation
Moscow
References
1. Gorodnov A. (2023). A look at inflation in the Russian еconomy through the prism of the Phillips curve. Mimeo. https://doi.org/10.2139/ssrn.4475264
2. Lomonosov D. (2023). Shocks of business activity and specific shocks to oil market in DSGE model of Russian economy and their influence under different monetary policy regimes. Russian Journal of Money and Finance, Vol. 82, No. 4, pp. 44—79. (In Russian).]
3. Lysenko G. V., Polbin A. V. (2023). Taylor rule in Russia in the periodof inflation targeting. Lomonosov Economics Journal, No. 1, pp. 22—44. (In Russian).] https://doi.org/10.55959/MSU0130-0105-6-58-1-2
4. Mukhin D. A. (2010). Short-run Phillips curve and inflationary processes in Russia. Economics and Mathematical Methods, Vol. 46, No. 2, pp. 118—130. (In Russian).]
5. Polbin A. V., Sinelnikov-Murylev S. G. (2024). Developing and impulse response matching estimation of the DSGE model for the Russian economy. Applied Econometrics, No. 1, pp. 5—34. (In Russian).] https://doi.org/10.22394/19937601-2024-73-5-34
6. Fedorov D., Magzhanov T., Kartaev P. (2025). Estimation and forecasting of Russian money market yield curves. Russian Journal of Money and Finance, Vol. 84, No. 2, pp. 36—64. (In Russian).]
7. Sharafutdinov A. (2023). Forecasting Russian GDP, inflation, interest rate, and exchange rate using DSGE-VAR model. Russian Journal of Money and Finance, Vol. 82, No. 3, pp. 62—86. (In Russian).]
8. Bianchi F., Ilut C., Saijo H. (2024). Diagnostic business cycles. Review of Economic Studies, Vol. 91, No. 1, pp. 129—162. https://doi.org/10.1093/restud/rdad024
9. Blanchard O. J., L’Huillier J.-P., Lorenzoni G. (2013). News, noise, and fluctuations: An empirical exploration. American Economic Review, Vol. 103, No. 7, pp. 3045—3070. https://doi.org/10.1257/aer.103.7.3045
10. Bordalo P., Gennaioli N., La Porta R., Shleifer A. (2019). Diagnostic expectations and stock returns. Journal of Finance, Vol. 74, No. 6, pp. 2839—2874. https://doi.org/10.1111/jofi.12833
11. Bordalo P., Gennaioli N., Ma Y., Shleifer A. (2020). Overreaction in macroeconomic expectations. American Economic Review, Vol. 110, No. 9, pp. 2748—2782. https://doi.org/10.1257/aer.20181219
12. Bordalo P., Gennaioli N., Shleifer A. (2018). Diagnostic expectations and credit cycles. Journal of Finance, Vol. 73, No. 1, pp. 199—227. https://doi.org/10.1111/jofi.12586
13. Camous A., Van der Ghote A. (2022). Financial cycles under diagnostic beliefs. ECB Working Paper, No. 2659, pp. 1—33. https://doi.org/10.2139/ssrn.4100189
14. Christiano L. J., Eichenbaum M., Evans C. L. (2005). Nominal rigidities and the d ynamic effects of a shock to monetary policy. Journal of Political Economy, Vol. 113, No. 1, pp. 1—45. https://doi.org/10.1086/426038
15. Fiedler K. (1988). The dependence of the conjunction fallacy on subtle linguistic factors. Psychological Research, Vol. 50, No. 2, pp. 123—129. https://doi.org/10.1007/ BF00309212
16. Galı́ J., López-Salido J. D., Vallés J. (2003). Technology shocks and monetary policy: Аssessing the Fed’s performance. Journal of Monetary Economics, Vol. 50, No. 4, pp. 723—743. https://doi.org/10.1016/S0304-3932(03)00037-0
17. Gennaioli N., Shleifer A. (2010). What comes to mind. Quarterly Journal of Economics, Vol. 125, No. 4, pp. 1399—1433. https://doi.org/10.1162/qjec.2010.125.4.1399
18. Gust C., Herbst E., López-Salido D., Smith M. E. (2017). The empirical implications of the interest-rate lower bound. American Economic Review, Vol. 107, No. 7, pp. 1971—2006. https://doi.org/10.1257/aer.20121437
19. Kahneman D., Tversky A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, Vol. 3, No. 3, pp. 430—454. https://doi.org/10.1016/00100285(72)90016-3
20. Klayman J., Ha Y.-W. (1987). Confirmation, disconfirmation, and information in hypothesis testing. Psychological Review, Vol. 94, No. 2, pp. 211—228. https://doi.org/10.1037/0033-295X.94.2.211
21. L’Huillier J. P., Singh S. R., Yoo D. (2024). Incorporating diagnostic expectations into the New Keynesian framework. Review of Economic Studies, Vol. 91, No. 5, pp. 3013—3046. https://doi.org/10.1093/restud/rdad101
22. Maxted P. (2024). A macro-finance model with sentiment. Review of Economic Studies, Vol. 91, No. 1, pp. 438—475. https://doi.org/10.1093/restud/rdad023
23. Smets F., Wouters R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. American Economic Review, Vol. 97, No. 3, pp. 586—606. https://doi.org/10.1257/aer.97.3.586
24. Svensson L. (1997). Inflation forecast targeting: Implementing and monitoring inflation targets. European Economic Review, Vol. 41, No. 6, pp. 1111—1146. https://doi.org/10.1016/S0014-2921(96)00055-4
Supplementary files
Review
For citations:
Kolesnik S.I., Magzhanov T.R., Kartaev P.S. Monetary policy of the Bank of Russia under diagnostic expectations. Voprosy Ekonomiki. 2026;(1):66-79. (In Russ.) https://doi.org/10.32609/0042-8736-2026-1-66-79
JATS XML















