

Construction of regional input—output tables for Russian regions
https://doi.org/10.32609/0042-8736-2025-7-98-112
Abstract
The methodology is developed for constructing complete regional input—output tables for the constituent entities of the Russian Federation based on analytical regionalization methods. Unlike most existing approaches, which are limited to regionalizing only the first quadrant of input—output tables, the proposed method covers all three quadrants: intermediate consumption, final use, and value added. The construction of the tables relies on a combination of location quotients, data from the Transport-Economic Balance (TEB), and international trade statistics from the Federal Customs Service (FCS), along with the application of the RAS balancing method to eliminate discrepancies with official GRP statistics. Full intersectoral tables have been compiled for 85 regions and 8 federal districts for the year 2018. The developed approach ensures the consistency of product flows between intermediate and final use and incorporates both interregional and international trade. The results provide extensive opportunities for analyzing regional economies, spatial economic modeling, and constructing interregional input—output tables, while also laying the foundation for further empirical and theoretical research.
Keywords
JEL: C67, F14, R11, R12, R15
About the Authors
D. Y. EvdokimovRussian Federation
Dmitrii Y. Evdokimov
Moscow
Yu. A. Pleskachev
Russian Federation
Yury A. Pleskachev
Moscow
Yu. Y. Ponomarev
Russian Federation
Yury Y. Ponomarev
Moscow
References
1. Piskunov E. Y. (2022). Intersectoral balance of the economy of the Republic of Buryatia. Bulletin of the BSC SB RAS, No. 1, pp. 154—159. (In Russian). https://doi.org/10.31554/2222-9175-2022-45-154-159
2. Ponomarev Y. Y., Evdokimov D. Y. (2021). Construction of truncated input—output tables for Russian regions using location quotients. Problemy Prognozirovaniya, No. 6, pp. 43—58. (In Russian). https://doi.org/10.47711/0868-6351-189-43-58
3. Sayapova A. R. (2004). Input—output tables in the analysis and forecasting of structural parameters of a regional economy. Problemy Prognozirovaniya, No. 6, pp. 28—41. (In Russian).
4. Bonfiglio A. (2005). Can non-survey methods substitute for survey-based models? A performance analysis of indirect techniques of estimating I—O coefficients and multipliers. Universita’ Politecnica delle Marche (I) Working Papers, No. 230.
5. Bonfiglio A., Chelli F. (2008). Assessing the behaviour of non-survey methods for constructing regional input—output tables through a Monte Carlo simulation. Economic Systems Research, Vol. 20, pp. 243—258. https://doi.org/10.1080/09535310802344315
6. Ershov Y., Ibragimov N., Dushenin A. (2021). Input—output table regionalization and multiregional input—output model development algorithm. Journal of Siberian Federal University. Humanities & Social Sciences, Vol. 7, No. 14, pp. 1018—1027. https://doi.org/10.17516/1997-1370-0781
7. Flegg A. T., Webber C. D. (1997). On the appropriate use of location quotients in generating regional input—output tables: Reply. Regional Studies, Vol. 31, No. 8, pp. 795—805. https://doi.org/10.1080/713693401
8. Flegg A. T., Webber C. D. (2010). Regional size, regional specialization and the FLQ formula. Regional Studies, Vol. 34, No. 6, pp. 563—569. https://doi.org/10.1080/00343400050085675
9. Flegg A. T., Webber C. D., Elliott M. V. (1995). On the appropriate use of location quotients in generating regional input—output tables. Regional Studies, Vol. 29, No. 6, pp. 547—561. https://doi.org/10.1080/00343409512331349173
10. Kowalewski J. (2015). Regionalization of national input—output tables: Empirical evidence on the use of the FLQ formula. Regional Studies, Vol. 49, No. 2, pp. 240—250. https://doi.org/10.1080/00343404.2013.766318
11. Krebs O. (2020). RIOTs in Germany — constructing an interregional input—output table for Germany. University of Tübingen Working Papers in Business and Economics, Vol. 132. 10.15496/publikation-40407
12. Oosterhaven J., Eding G., Stelder D. (2001). Clusters, linkages and interregional spillovers: Methodology and policy implications for the two Dutch mainports and the rural North. Regional Studies, Vol. 35, No. 9, pp. 809—822. https://doi.org/10.1080/00343400120090239
13. Round J. (1978). An interregional input—output approach to the evaluation of nonsurvey. Journal of Regional Science, Vol. 18, pp. 179—194. 10.1111/j.1467-9787.1978.tb00540.x
14. Schaffer W. A., Chu K. (1969). Nonsurvey techniques for constructing regional interindustry models. Papers of the Regional Science Association, Vol. 23, No. 1, pp. 83—101. https://doi.org/10.1111/j.1435-5597.1969.tb01403.x
15. Tarahomi F., Bazzazan F. (2021). A method for preparing multi-regional input—output tables despite data limitation: FLQ-Gravity. Journal of Economic Cooperation & Development, Vol. 42, No. 2, pp. 1—23.
16. Thissen M., Ivanova O., Mandras G., Husby T. (2019). European NUTS 2 regions: Construction of interregional trade-linked Supply and Use tables with consistent transport flows. JRC Working Papers on Territorial Modelling and Analysis, No. 2019-01.
17. Zhao X., Choi S. (2015). On the regionalization of input—output tables with an industryspecific location quotient. Annals of Regional Science, Vol. 54, No. 3, pp. 901—926. https://doi.org/10.1007/s00168-015-0693-x
Supplementary files
Review
For citations:
Evdokimov D.Y., Pleskachev Yu.A., Ponomarev Yu.Y. Construction of regional input—output tables for Russian regions. Voprosy Ekonomiki. 2025;(7):98-112. (In Russ.) https://doi.org/10.32609/0042-8736-2025-7-98-112