Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The price of carbon: Choosing between the physical and economic equivalence of emissions and permits

https://doi.org/10.32609/0042-8736-2025-7-82-97

Abstract

Carrying out decarbonization of the economy requires a mechanism for determining the price of carbon. The work is built on the data of the world’s leading studies, statistical and exchange indicators, that are analyzed using the methods of descriptive statistics and integral equations. The features of carbon as an external effect are highlighted, which, in comparison with standard exchange assets, to a greater extent limit the possibility of setting a price for it in the course of negotiations and bargaining (the Coase theorem). The incompatibility of ensuring physical equivalence of emitted and stored carbon with economic equivalence, taking into account time preferences, is shown. The method for determining the price of carbon is proposed to achieve a balance of interests between current and future generations, taking into account differences among countries and emitted greenhouse gases. This method was tested for Russia. The criteria and mechanisms of carbon pricing as an external effect, keeping in mind its highlighted features, are put forward. Measures aimed at maximizing the effect of decarbonization of the economy are proposed.

About the Authors

V. V. Karginova-Gubinova
Institute of Economics, the Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

Valentina V. Karginova-Gubinova 

Petrozavodsk 



O. V. Tolstogyzov
Institute of Economics, the Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

Oleg V. Tolstogyzov 

Petrozavodsk 



S. V. Tishkov
Institute of Economics, the Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

Sergey V. Tishkov 

Petrozavodsk 



E. A. Shlapeko
Institute of Economics, the Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

Ekaterina A. Shlapeko 

Petrozavodsk 



References

1. Gorbacheva N. V. (2024). Economic efficiency of climatic projects: Conventional and temporal approaches. HSE Economic Journal, Vol. 28, No. 4, pp. 587—614. (In Russian). https://doi.org/10.17323/1813-8691-2024-28-4-587-614

2. Ismagilova O. (2023). Carbon pricing world wide. St Petersburg University Journal of Economic Studies, Vol. 39, No. 4, pp. 470—495. (In Russian). https://doi.org/10.21638/spbu05.2023.402

3. Karginova-Gubinova V. V. (2025). Priorities of Russian companies in air protection: Pollutant emissions vs greenhouse gases. ECO, Vol. 55, No. 2, pp. 70—88. (In Russian). https://doi.org/10.30680/ECO0131-7652-2025-2-70-88

4. Kryukov V. A. (2025). Trading “air” — common concern, different approaches. ECO, Vol. 55, No. 1, pp. 4—7. (In Russian). https://doi.org/10.30680/ECO0131-7652-2025-1-4-7

5. Stepanov I. A., Galimova K. Z. (2021). Carbon price: Theory and practice of greenhouse gas emissions regulation. Moscow University Economics Bulletin, No. 4, pp. 95—116. (In Russian). https://doi.org/10.38050/01300105202145

6. Anderegg W. R. L., Trugman A. T., Badgley G. et al. (2020). Climate-driven risks to the climate mitigation potential of forests. Science, Vol. 368, No. 6497, pp. 1—9. https://doi.org/10.1126/science.aaz7005

7. Arcusa S., Sprenkle-Hyppolite S. (2022). Snapshot of the carbon dioxide removal certification and standards ecosystem (2021—2022). Climate Policy, Vol. 22, No. 9—10, pp. 1319—1332. https://doi.org/10.1080/14693062.2022.2094308

8. Bilal A., Känzig D. R. (2024). The macroeconomic impact of climate change: Global vs. local temperature. NBER Working Paper, No. 32450. https://doi.org/10.3386/w32450

9. Cai Y., Lontzek T. S. (2019). The social cost of carbon with economic and climate risks. Journal of Political Economy, Vol. 127, No. 6, pp. 2684—2734. https://doi.org/10.1086/701890

10. Cooper S. (2020). Temporal climate impacts. Bath: University of Bath Research Data Archive. https://researchdata.bath.ac.uk/787/

11. Cooper S. J. G., Green R., Hattam L. et al. (2020). Exploring temporal aspects of climate-change effects due to bioenergy. Biomass and Bioenergy, Vol. 142, pp. 1—11. https://doi.org/10.1016/j.biombioe.2020.105778

12. Döbbeling-Hildebrandt N., Miersch K., Khanna T. M. et al. (2024). Systematic review and meta-analysis of ex-post evaluations on the effectiveness of carbon pricing. Nature Communications, Vol. 15, pp. 1—12. https://doi.org/10.1038/s41467-024-48512-w

13. Fearnside P. M., Lashof D. A., Moura-Costa P. (2000). Accounting for time in mitigating global warming through land-use change and forestry. Mitigation and Adaptation Strategies for Global Change, Vol. 5, pp. 239—270. https://doi.org/10.1023/A:1009625122628

14. Gauci V., Pangala S. R., Shenkin A. et al. (2024). Global atmospheric methane uptake by upland tree woody surfaces. Nature, Vol. 631, pp. 796—800. https://doi.org/10.1038/s41586-024-07592-w

15. Hawkins W., Cooper S., Allen S. et al. (2021). Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure. Structures, Vol. 33, pp. 90—98. https://doi.org/10.1016/j.istruc.2020.12.013

16. IPCC (2019). Global warming of 1.5°C. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009157940

17. Joos F., Roth R., Fuglestvedt J. S. el al. (2013). Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, Vol. 13, pp. 2793—2825. https://doi.org/10.1023/A:1009697625521

18. Khan J., Johansson B. (2022). Adoption, implementation and design of carbon pricing policy instruments. Energy Strategy Reviews, Vol. 40, pp. 1—8. https://doi.org/10.1016/j.esr.2022.100801

19. Levasseur A., Lesage P., Margni M. et al. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science & Technology, Vol. 44, No. 8, pp. 3169—3174. https://doi.org/10.1021/es9030003

20. Lilliestam J., Patt A., Bersalli G. (2021). The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex-post evidence. WIREs Climate Change, Vol. 12, No. 1, pp. 1—21. https://doi.org/10.1002/wcc.681

21. Mar K. A., Unger C., Walderdorff L., Butler T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy, Vol. 134, pp. 127—136. https://doi.org/10.1016/j.envsci.2022.03.027

22. Marland G., Fruit K., Sedjo R. (2001). Accounting for sequestered carbon: The question of permanence. Environmental Science & Policy, Vol. 4, No. 6, pp. 259—268. https://doi.org/10.1016/S1462-9011(01)00038-7

23. Mikolajczyk S., Mallol J. (2025). Voluntary carbon market 2024 review. Climate Focus, January.

24. Moura Costa P. (2000). An equivalence factor between CO2 avoided emissions and sequestration — description and applications in forestry. Mitigation and Adaptation Strategies for Global Change, Vol. 5, pp. 51—60. https://doi.org/10.1023/A:1009697625521

25. Nordhaus W. D. (2017). Revisiting the social cost of carbon. Proceedings of the National Academy of Sciences, Vol. 114, No. 7, pp. 1518—1523. https://doi.org/10.1073/pnas.1609244114

26. Parisa Z., Marland E., Sohngen B. et al. (2022). The time value of carbon storage. Forest Policy and Economics, Vol. 144, pp. 1—7. https://doi.org/10.1016/j.forpol.2022.102840

27. Schoenmaker D., Schramade W. (2024). Which discount rate for sustainability? Journal of Sustainable Finance and Accounting, Vol. 3, pp. 1—7. https://doi.org/10.1016/j.josfa.2024.100010

28. Shine K. P., Fuglestvedt J. S., Hailemariam K. et al. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, Vol. 68, pp. 281—302. https://doi.org/10.1007/s10584-005-1146-9

29. Spilker G., Nugent N. (2022). Voluntary carbon market derivatives: Growth, innovation & usage. Borsa Istanbul Review, Vol. 22, No. 2, pp. S109—S118. https://doi.org/10.1016/j.bir.2022.11.008

30. Stern N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511817434

31. Tol R. S. J. (2025). Database for the meta-analysis of the social cost of carbon (v2025.1). arXiv:2402.09125. https://doi.org/10.48550/arXiv.2402.09125

32. Zhang X., Jiao Z., Zhao C. et al. (2022). Review of land surface albedo: Variance characteristics, climate effect and management strategy. Remote Sensing, Vol. 16, No. 6, pp. 1—28. https://doi.org/10.3390/rs14061382


Supplementary files

Review

For citations:


Karginova-Gubinova V.V., Tolstogyzov O.V., Tishkov S.V., Shlapeko E.A. The price of carbon: Choosing between the physical and economic equivalence of emissions and permits. Voprosy Ekonomiki. 2025;(7):82-97. (In Russ.) https://doi.org/10.32609/0042-8736-2025-7-82-97

Views: 45


ISSN 0042-8736 (Print)