Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The artificial intelligence impact on Russian labor market

https://doi.org/10.32609/0042-8736-2025-1-71-91

Abstract

The paper studies the association between the artificial intelligence (AI) and employment characteristics. As a theoretical framework, we use the Acemoglu et al. model, which introduces opposing effects of the AI algorithms on labor employment on the firm level such as substitution effect and complimentary/ productivity effects. Depending on their relative strength, the AI algorithms may both decrease and increase employment. The overall effect is estimated using the data on 3.5 million of vacancies for about 35 thousand firms published up to 2022 spring on the HeadHunter website. According to the results, the existence of tasks realizable using AI is consistent with a higher AI employment, which implies the substitution effect. The other, less intuitive, result is that the same tasks suggest a higher non-AI employment, supports complimentary/productivity effects. The overall employment effect is positive as follows from the positive AI tasks—total employment association.

About the Authors

A. S. Skorobogatov
HSE University
Russian Federation

Alexander S. Skorobogatov,

Saint Petersburg.



O. I. Sviridov
HSE University
Russian Federation

Oleg I. Sviridov,

Saint Petersburg.



References

1. Волгин А. Д., Гимпельсон В. Е. (2022). Спрос на навыки: анализ на основе онлайн данных о вакансиях // Экономический журнал Высшей школы экономики. Т. 26, № 3. С. 343—374. [Volgin A. D., Gimpelson V. E. (2022). Demand for skills: Analysis using online vacancy data. HSE Economic Journal, Vol. 26, No. 3, pp. 343—374. (In Russian).] http://doi.org/10.17323/1813-8691-2022-263-343-374

2. Гимпельсон В. Е., Капелюшников Р. И. (2022). Рутинность и риски автоматизации на российском рынке труда // Вопросы экономики. № 8. С. 68—94. [Gimpelson V. E., Kapeliushnikov R. I. (2022). Work routines and risks of automation in the Russian labor market. Voprosy Ekonomiki, No. 8, pp. 68—94. (In Russian).] https://doi.org/10.32609/0042-8736-2022-8-68-94

3. Скоробогатов А. С. (2017). Аггломерационные эффекты, институты и природные ресурсы в изменяющейся экономической географии России // Вопросы экономики. № 1. С. 81—102. [Skorobogatov A. S. (2017). Agglomeration effects, institutions, and natural resources in the changing economic geography of Russia. Voprosy Ekonomiki, No. 1, pp. 81—102. (In Russian).] https://doi.org/10.32609/0042-8736-2017-1-81-102

4. Росстат (2023a). Регионы России. Социально-экономические показатели: Стат. сб. Москва. [Rosstat (2023a). Regions of Russia. Socio-economic indicators: Statistical digest. Moscow.]

5. Росстат (2023b). Труд и занятость в России: Стат. сб. Mосква. [Rosstat (2023b). Labor and employment in Russia: Statistical digest. Moscow.]

6. Acemoglu D., Autor D., Hazell J., Restrepo P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, Vol. 40, No. S1, pp. 293—340. https://doi.org/10.1086/718327

7. Acemoglu D., LeLarge C., Restrepo P. (2020). Competing with robots: Firm-level evidence from France. AEA Papers and Proceedings, Vol. 110, pp. 383—388. https:// doi.org/10.1257/pandp.20201003

8. Acemoglu D., Restrepo P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, Vol. 108, No. 6, pp. 1488—1542. https://doi.org/10.1257/aer.20160696

9. Acemoglu D., Restrepo P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, Vol. 33, No. 2, pp. 3—30. https://doi.org/10.1257/jep.33.2.3

10. Acemoglu D., Restrepo P. (2020). The wrong kind of AI? Artificial intelligence and the future of labour demand. Cambridge Journal of Regions, Economy and Society, Vol. 13, No. 1, pp. 25—35. https://doi.org/10.1093/cjres/rsz022

11. Autor D. H., Levy F., Murnane R. J. (2003). The skill content of recent technological change: An empirical exploration. Quarterly Journal of Economics, Vol. 118, No. 4, pp. 1279—1333. https://doi.org/10.1162/003355303322552801

12. Bagger J., Fontaine F., Galenianos M., Trapeznikova L. (2022). Vacancies, employment outcomes and firm growth: Evidence from Denmark. Labour Economics, Vol. 75, article 102103. https://doi.org/10.1016/j.labeco.2021.102103

13. Brynjolfsson E., Mitchel T., Rock D. (2019). Machine learning and occupational change. Unpublished manuscript, MIT.

14. Bughin J., Hazan E., Manyika J., Woetzel J. (2017). Artificial intelligence: The next digital frontier? (Discussion Paper). McKinsey Global Institute.

15. Dinlersoz E., Wolf Z. (2018). Automation, labor share, and productivity: Plant level evidence from U.S. manufacturing. CES Working Paper, No. 18-39, Center for Economic Studies, U.S. Census Bureau.

16. Felten E. W., Raj M., Seamans R. (2018). A method to link advances in artificial intelligence to occupational abilities. AEA Papers and Proceedings, Vol. 108, pp. 54—57. https://doi.org/10.1257/pandp.20181021

17. Felten E. W., Raj M., Seamans R. (2019). The effect of artificial intelligence on human labor: An ability-based approach. Academy of Management Proceedings, Vol. 2019, No. 1. https://doi.org/10.5465/AMBPP.2019.140

18. Hosny A., Parmar C., Quackenbush J., Schwartz L. H., Aerts H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, Vol. 18, рp. 500—510. https://doi.org/10.1038/s41568-018-0016-5

19. Mijwil M. M., Aggarwal K., Sonia S., Al-Mistarehi A. H., Alomari S., Gök M., Zein Alaabdin A. M., Abdulrhman S. H. (2022). Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi Journal for Computer Science and Mathematics, Vol. 3, No. 1, article 13. https:// doi.org/10.52866/ijcsm.2022.01.01.013

20. Quan X. I., Sanderson J. (2018). Understanding the artificial intelligence business ecosystem. IEEE Engineering Management Review, Vol. 46, No. 4, pp. 22—25. https://doi.org/10.1109/EMR.2018.2882430

21. Skorobogatov A. S. (2018). Why do newer cities promise higher wages in Russia? Journal of Urban Economics, Vol. 104, pp. 16—34. https://doi.org/10.1016/j.jue.2017.12.003

22. Webb M. (2019). The impact of artificial intelligence on the labor market. Available at SSRN: https://doi.org/10.2139/ssrn.3482150

23. West D. M. (2018). The future of work: Robots, AI, and automation. Washington, DC: Brookings Institution Press.


Supplementary files

Review

For citations:


Skorobogatov A.S., Sviridov O.I. The artificial intelligence impact on Russian labor market. Voprosy Ekonomiki. 2025;(1):71-91. (In Russ.) https://doi.org/10.32609/0042-8736-2025-1-71-91

Views: 1099


ISSN 0042-8736 (Print)