

Macroeconomic factors of housing prices in Russia
https://doi.org/10.32609/0042-8736-2025-1-92-114
Abstract
The main household decisions are related to the consumer and housing market, while housing decisions are related to mortgages. Moreover, both markets are significantly influenced by the macroeconomic environment. The paper aims to study the structural relationships between the macroeconomic environment, consumer and housing markets. How do these aspects relate to each other in Russia? To analyze the associations, the Bayesian vector autoregression methodology with sign restrictions is used. The obtained results show that the housing market strongly depends on fluctuations in the consumer market, whereas the inverse dependence is not so strongly manifested. At the same time, the impact of mortgage shocks and monetary conditions has a greater impact on the volume indicators of the consumer and housing markets than on prices. The dynamics of housing prices is more related to the supply of housing, while consumer prices are related to the ruble exchange rate and supply and demand shocks. The impact e of oil prices on the dynamics of both markets is analyzed. Oil prices have the most significant impact on household consumption, mainly through the demand channel. One way of functioning of this channel are the fluctuations of real disposable incomes in response to fluctuations in oil prices. The constructed model built demonstrates acceptable predictive characteristics, outperfoming the best univariate time series models on certain horizons.
Keywords
JEL: E21, E27, E31, E37, C32, R31
About the Author
G. V. LysenkoRussian Federation
Gleb V. Lysenko,
Moscow.
References
1. Дробышевский С. М., Наркевич С. С., Пикулина Е. С., Полевой Д. И. (2009). Анализ возможности возникновения «пузыря» на российском рынке недвижимости // Научные труды ИЭПП. № 128. [Drobyshevsky S. M., Narkevich S. S., Pikulina E. S., Polevoy D.I. (2009). Analysis of a possible bubble on the Russian real estate market. Gaidar Institute of Economic Policy Working Paper, No. 128. (In Russian).]
2. Ломоносов Д. А., Полбин А. В., Фокин Н. Д. (2020). Шоки спроса, предложения, ДКП и цен на нефть в российской экономике (анализ на основе модели BVAR со знаковыми ограничениями) // Вопросы экономики. № 10. С. 83—104. [Lomonosov D. A., Polbin A. V., Fokin N. D. (2020). Demand, supply, monetary policy , and oil price shocks in the Russian economy (Analysis based on the BVAR model with sign restrictions). Voprosy Ekonomiki, No. 10, pp. 83—104. (In Russian).] https://doi.org/10.32609/0042-8736-2020-10-83-104
3. Мишура А. В. (2023). Ипотечное кредитование и цены на жилье: необоснованные обвинения? // Вопросы экономики. № 3. C. 63—82. [Mishura A. V. (2023). Mortgage lending and housing prices in Russia: Unfounded accusations? Voprosy Ekonomiki, No. 3, pp. 63—82. (In Russian).] https://doi.org/10.32609/00428736-2023-3-63-82
4. Никитина Н. С. (2023). Анализ факторов, влияющих на динамику цен на жилую недвижимость в России // Финансы: теория и практика. Т. 27, № 1. C. 208—220. [Nikitina N. S. (2023). Analysis of factors affecting the dynamics of residential real estate prices in Russia. Finance: Theory and Practice, Vol. 27, No. 1, pp. 208—220. (In Russian).] https://doi.org/10.26794/2587-5671-2023-27-1-208-220
5. Сальников В. А., Михеева О. М. (2018). Модели прогнозирования цен на московском рынке жилой недвижимости // Проблемы прогнозирования. Т. 1, № 3. С. 129—139. [Salnikov V. A., Mikheeva O. M. (2018). Models for predicting prices in the Moscow residential real estate market. Problemy Prognozirovaniya, Vol. 1, No. 3, pp. 129—139. (In Russian).]
6. Bailey M., Dávila E., Kuchler T., Stroebel J. (2019). House price beliefs and mortgage leverage choice. Review of Economic Studies, Vol. 86, No. 6, pp. 2403—2452. https://doi.org/10.1093/restud/rdy068
7. Battistini N., Falagiarda M., Hackmann A., Roma M. (2025). Navigating the housing channel of monetary policy across euro area regions. European Economic Review, Vol. 171, article 104897. https://doi.org/10.1016/j.euroecorev.2024.104897
8. Bäurle G., Scheufele R. (2019). Credit cycles and real activity: Тhe Swiss case. Empirical Economics, Vol. 56, pp. 1939—1966. https://doi.org/10.1007/s00181-018-1449-0
9. Bian T. Y., Gete P. (2015). What drives housing dynamics in China? A sign restrictions VAR approach. Journal of Macroeconomics, Vol. 46, pp. 96—112. https://doi.org/10.1016/j.jmacro.2015.08.004
10. Brueckner J. K. (1997). Consumption and investment motives and the portfolio choices of homeowners. Journal of Real Estate Finance and Economics, Vol. 15, pp. 159—180. https://doi.org/10.1023/A:1007777532293
11. Campbell J. Y., Cocco J. F. (2007). How do house prices affect consumption? Evidence from micro data. Journal of Monetary Economics, Vol. 54, No. 3, pp. 591—621. https://doi.org/10.1016/j.jmoneco.2005.10.016
12. Carstensen K., Hülsewig O., Vollmerhausen T. (2009). Monetary policy transmission and house prices: European cross-country evidence. CESifo Working Paper Series, No. 2750. https://doi.org/10.2139/ssrn.1447256
13. Carvalho C. M., Polson N. G., Scott J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, Vol. 97, No. 2, pp. 465—480. https://doi.org/10.1093/biomet/asq017
14. Cocco J. F. (2005). Portfolio choice in the presence of housing. Review of Financial Studies, Vol. 18, No. 2, pp. 535—567. https://doi.org/10.1093/rfs/hhi006
15. Grossman V., Martínez-García E., Torres L. B., Sun Y. (2019). Drilling down: The impactof oil price shocks on housing prices. Energy Journal, Vol. 40, No. 2_suppl, pp. 59—84. https://doi.org/10.5547/01956574.40.SI2.vgro
16. Han L. (2010). The effects of price risk on housing demand: Empirical evidence from US markets. Review of Financial Studies, Vol. 2, No. 11, pp. 3889—3928. https://doi.org/10.1093/rfs/hhq088
17. Haurin D. R., Gill H. L. (2002). The impact of transaction costs and the expected length of stay on homeownership. Journal of Urban Economics, Vol. 51, No. 3, pp. 563—584. https://doi.org/10.1006/juec.2001.2258
18. Henderson J. V., Ioannides Y. M. (1983). A model of housing tenure choice. American Economic Review, Vol. 73, No. 1, pp. 98—113.
19. Iacoviello M. (2002). House prices and business cycles in Europe: A VAR analysis. Boston College Working Papers in Economics, No. 540.
20. Iacoviello M. (2005). House prices, borrowing constraints, and monetary policy in the business cycle. American Economic Review, Vol. 95, No. 3, pp. 739—764. https://doi.org/10.1257/0002828054201477
21. Kilian L., Zhou X. (2022). The propagation of regional shocks in housing markets: Evidence from oil price shocks in Canada. Journal of Money, Credit and Banking, Vol. 54, No. 4, pp. 953—987. https://doi.org/10.1111/jmcb.12847
22. Killins R. N., Egly P. V., Escobari D. (2017). The impact of oil shocks on the housing market: Evidence from Canada and US. Journal of Economics and Business, Vol. 93, pp. 15—28. https://doi.org/10.1016/j.jeconbus.2017.07.002
23. Korobilis D. (2022). A new algorithm for structural restrictions in Bayesian vector autoregressions. European Economic Review, Vol. 148, article 104241. https://doi.org/10.1016/j.euroecorev.2022.104241
24. Kuang W., Liu P. (2015). Inflation and house prices: Theory and еvidence from 35 major cities in China. International Real Estate Review, Vol. 18, No. 1, pp. 217—240. https://doi.org/10.53383/100200
25. Malmendier U., Nagel S. (2016). Learning from inflation experiences. Quarterly Journal of Economics, Vol. 131, No. 1, pp. 53—87. https://doi.org/10.1093/qje/qjv037
26. Nocera A., Roma M. (2018). House prices and monetary policy in the euro area: Evidence from structural VARs. USC-INET Research Paper, No. 18-13. https://doi.org/10.2139/ssrn.3256380
27. Shapiro A. H. (2022). Decomposing supply and demand driven inflation. Federal Reserve Bank of San Francisco Working Paper, No. 2022-18. https://doi.org/10.24148/wp2022-18
Supplementary files
Review
For citations:
Lysenko G.V. Macroeconomic factors of housing prices in Russia. Voprosy Ekonomiki. 2025;(1):92-114. (In Russ.) https://doi.org/10.32609/0042-8736-2025-1-92-114