Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Behavioral economics and DSGE-modeling

https://doi.org/10.32609/0042-8736-2020-1-47-65

Abstract

The article considers the “behavioral” modification of the standard DSGE model proposed by X. Gabaix. In his model, agents behave in a boundedly rational manner, showing incomplete attention to macroeconomic statistics. Moreover, unlike other attempts to abandon the hypothesis of rational expectations in favor of a model of adaptive and/or static expectations, the Gabaix model is initially constructed taking into account the inattention of economic agents to macro variables. The consequence of bounded rationality is that monetary policy is less effective (compared to the model of rational expectations) and, conversely, fiscal policy is effective due to the fact that Ricardo equivalence is not fulfilled. If the inertia of inflation expectations is taken into account in the Gabaix model, it demonstrates that the interest rate has a positive effect on inflation in the long run. Bayesian estimates for the rationality coefficient in the Russian economy are presented. Moreover, attention to inflation is much lower than attention to the variable of economic activity.

About the Author

D. N. Shults
Center of Infrastructural Economics; Russian Foreign Trade Academy
Russian Federation


References

1. Akerlof G., Shiller R. (2010). Animal spirits. How human psychology drives the economy, and why it matters for global capitalism. Moscow: Alpina Business Books. (In Russian).

2. Bank of Russia (2015). Monetary policy report, No. 1, March.

3. Gaydar E. (ed.) (1998). Economy of the transition. Essays on the economic policy of postcommunist Russia 1991—1997. Moscow: IEPP. (In Russian).

4. Grozovskiy B. (2014). The percentage of illiteracy: How to learn to make the right financial decisions. Forbes, No. 7, pp. 20—21. (In Russian).

5. DellaVigna S. (2011a). Psychology and economics: Evidence from the field. Part I. Nonstandard preferences. Voprosy Economiki, No. 4, pp. 47—77. (In Russian). https://doi.org/10.32609/0042-8736-2011-4-47-77

6. DellaVigna S. (2011b). Psychology and economics: Evidence from the field. Part II: Social preferences and nonstandard beliefs. Voprosy Economiki, No. 5, pp. 56-74. (In Russian). https:// doi.org/10.32609/0042-8736-2011-5-56-74

7. DellaVigna S. (2011c). Psychology and economics: Evidence from the field. Part III: Nonstandard decision making and market response. Voprosy Economiki, No. 6, pp. 82—106. (In Russian). https://doi.org/10.32609/0042-8736-2011-6-82-106

8. Kapelyushnikov R. (2013). Behavioral economics and new paternalism. Part I. Voprosy Economiki, No. 9, pp. 66—90. (In Russian). https://doi.org/10.32609/0042-8736-2013-9-66-90

9. Colander D., Föllmer H., Haas A., Goldberg M., Juselius K., Kirman A., Lux T., Sloth B. (2010). The financial crisis and the systemic failure of academic economics. Voprosy Economiki, No. 6, pp. 10—25. (In Russian). https://doi.org/10.32609/0042-8736-2010-6-10-25

10. Oshakbaev R. S., Kyssykov A. B., Shults D. N. (2017). Econometric modeling of inflation processes in Kazakhstan. Upravlenie Ekonomicheskimi Sistemami, No. 7. (In Russian). http://uecs.ru/makroekonomika/item/4476-2017-07-03-10-12-30

11. Oshchepkov I. A. (2017). Increase the accuracy of macroeconomic analysis and forecasting in the Russian Federation on the basis of dynamic stochastic modeling. Cand. Sci. (Econ.) Thesis. Perm: Perm State University. (In Russian).

12. Sokolinskii V. M. (1999). The psychological foundations of economics. Moscow: YuNITI. (In Russian).

13. Suhova А. А. (2004). Mathematical modeling of inflation processes in the conditions of a transforming economy (on the example of Russia). Cand. Sci. (Econ.) Thesis. Shahty: Shakhty Institute (Branch of the South Russian State Technical University. (In Russian).

14. Fagiolo G., Roventini A. (2009). On the scientific status of economic policy: A tale of alternative paradigms. Voprosy Economiki, No. 6, pp. 24—47. (In Russian). https://doi.org/10.32609/0042-8736-2009-6-24-47

15. Hudokormov A. G. (2013). Economic theory: Current trends in the West]. Moscow: Infra-M. (In Russian).

16. Shults D. N. (2017). Imperfect information and Bayesian estimation. Upravlenie Ekonomicheskimi Sistemami, No. 12. (In Russian). http://uecs.ru/index.php?option=com_flexicontent&view=items&id=4667

17. Bart M., Ramey V. (2002). The cost channel of monetary transmission. In: B. S. Bernanke, K. Rogoff (eds.). NBER macroeconomics annual 2001, Vol. 16. Cambridge, MA: MIT Press, pp. 199—256.

18. Christiano L. J., Trabandt M., Walentin K. (2011). DSGE models for monetary policy analisys. In: B. Friedman, M. Woodford (eds.). Handbooks of monetary economics, Vol. 3. Amsterdam: Elsevier, pp. 285—367.

19. Cochrane J. (2014). The Neo-Fisherian question. Available at: http://johnhcochrane.blogspot.ru/2014/11/the-neo-fisherian-question.html

20. Cochrane J. (2015). Do higher interest rates raise or lower inflation? Unpublished manuscript. Available at: http://faculty.chicagobooth.edu/john.cochrane/research/papers/fisher.pdf

21. De Grauwe P. (2008). DSGE-modelling when agents are imperfectly informed. ECB Working Paper Series, No. 897.

22. Farmer R. (2010). Animal spirits, persistent unemployment and the belief function. NBER Working Papers, No. 16522. https://doi.org/10.3386/w16522

23. Gabaix X. (2016a). Behavioral macroeconomics via sparse dynamic programming. NBER Working Papers, No. 21848. https://doi.org/10.3386/w21848

24. Gabaix X. (2016b). A behavioral New Keynesian model. NBER Working Papers, No. 22954. https://doi.org/10.3386/w22954

25. Gabaix X., Laibson D. (2017). Myopia and discounting. NBER Working Papers, No. 23254. https://doi.org/10.3386/w23254

26. Galí J. (2008). Monetary policy, inflation, and the business cycle: An introduction to the New Keynesian framework. Princeton: Princeton University Press.

27. Galí J., Gertler M. (1999). Inflation dynamics: A structural econometric analysis. Journal of Monetary Economics, Vol. 44. pp. 195—222. https://doi.org/10.1016/S0304-3932(99)00023-9

28. Gertler M. (2017). Rethinking the power of forward guidance: Lessons from Japan. NBER Working Papers, No. 23707. https://doi.org/10.3386/w23707

29. Giusto A. (2014). Adaptive learning and distributional dynamics in an incomplete markets model. Journal of Economic Dynamics and Control, Vol. 40, pp. 317—333. https://doi.org/10.1016/j.jedc.2014.01.007

30. Gobbi A., Grazzini J. (2019). A basic New Keynesian DSGE model with dispersed information: An agent-based approach. Journal of Economic Behavior & Organization, Vol. 157, pp. 101—116. https://doi.org/10.1016/j.jebo.2017.12.015

31. Kaplan G., Violante G.L. (2018). Microeconomic heterogeneity and macroeconomic shocks. Journal of Economic Perspectives, Vol. 32, Nо. 3, pp. 167—194. https://doi.org/10.1257/jep.32.3.167

32. Roos M. (2017). Behavioral and complexity macroeconomics. European Journal of Economics and Economic Policies, Vol. 14, No. 2, pp. 186—199. https://doi.org/10.4337/ejeep.2017.02.03

33. Sims C. A. (1991). Interpreting the macroeconomic time series facts: The effects of monetary policy. Unpublished manuscript. Available at: http://sims.princeton.edu/yftp/Madrid/EER4

34. Zhao W., Lu Y., Feng G. (2019). How Many Agents are Rational in China’s Economy? Evidence from a Heterogeneous Agent-Based New Keynesian Model. Computational Economics, Vol. 54, pp. 575—611. https://doi.org/10.1007/s10614-018-9844-3.


Review

For citations:


Shults D.N. Behavioral economics and DSGE-modeling. Voprosy Ekonomiki. 2020;(1):47-65. (In Russ.) https://doi.org/10.32609/0042-8736-2020-1-47-65

Views: 2022


ISSN 0042-8736 (Print)