

Measurement of population income: Variants of estimating biases
https://doi.org/10.32609/0042-8736-2020-1-127-144
Abstract
About the Author
T. Yu. CherkashinaRussian Federation
Candidate of Sociological Sciences, Senior Researcher
Department of Social Problems
Head of the Department “General Sociology”
References
1. Rogozin D., Manuilskaya K., Klimov I. (2006). Income Questions Testing. Socialnaya Realnost, No. 11, pp. 103—115. (In Russian).
2. Alasheev S. Yu. (2015). Veracity of the respondents’ answers to the questions on income. Sotsiologicheskiy Zhurnal, Vol. 21, No. 3, pp. 29—44. (In Russian).
3. UNECE. (2007). Register-based statistics in the Nordic Countries. Review of best practices with focus on population and social statistics. New-York, Geneva: United Nations. http://www.unece.org/index.php?id=17470
4. Andreenkova A. V. (2017). Sensitive questions in cross-national comparative surveys. Sociologicheskie Issledovaniya, No. 12, pp. 55—64. (In Russian).
5. Foley M. C. (1997). Poverty in Russia: Static and Dynamic Analyses. In: J. Klugman (еd.). Poverty in Russia: Public policy and private responses. EDI Development Study. Washington, DC: World Bank, pp. 65—90.
6. Voronin G. L., Kozyreva P. M., Kosolapov M. S., Nizamova A. E., Sivkova I. V., Smirnov A. I., Sokolova S. B., Tonis E. I. (2018). Dynamics of socio-economic behavior of Russian households (1994—2016). Bulletin of the Russia Longitudinal Monitoring Survey — Higher School of Economics (RLMS-HSE), Issue 8, pp. 8—99. (In Russian). https://doi.org/10.17323/978-5-7598-1825-08-99
7. Abowd J. M., Stinson M. H. (2013). Estimating measurement error in annual job earnings: A comparison of survey and administrative data. Review of Economics and Statistics, Vol. 95, No. 5, pp. 1451—1467. https://doi.org/10.1162/REST_a_00352
8. Denisova I. A. (2007). The return to levels, types and quality of education. In: V. E. Gimpelson, R. I. Kapelyushnikov (eds.). Wages in Russia: evolution and differentiation. Moscow: HSE Publ., pp. 343—402. (In Russian).
9. Akkerman S., Admiraal W., Brekelmans M., Oost H. (2008). Auditing Quality of Research in Social Sciences. Quality & Quantity, Vol. 42, pp. 257—274. https:// doi.org/10.1007/s11135-006-9044-4
10. Zharomskiy V. S., Rudberg A. M., Ter-Akopov S. A. (2015). Methods of restoring the per-capita income distribution in large samples to generalized population levels. Voprosy Statistiki, No. 6, pp. 12—23. (In Russian).
11. Angel S., Heuberger R., Lamei N. (2018). Differences between household income from surveys and registers and how these affect the poverty headcount: Evidence from the Austrian SILC. Social Indicators Research, Vol. 138, No. 2, pp. 575—603. https://doi.org/10.1007/s11205-017-1672-7
12. Lukyanova A.L. (2007). Dynamics and structure of wage inequality (1998-2005). In: V. E. Gimpelson, R. I. Kapelyushnikov (eds.). Wages in Russia: evolution and differentiation. Moscow: HSE Publ., pp. 486—546. (In Russian).
13. Bollinger C. R., Hirsch B. T. (2013). Is earnings nonresponse ignorable? Review of Economics and Statistics, Vol. 95, No. 2, pp. 407—416. https://doi.org/10.1162/ REST_a_00264
14. Lukyanova A. L. (2017). Wage mobility: before and after the global crisis. In: V. E. Gimpelson, R. I. Kapelyushnikov (ed.). Mobility and stability in the Russian labor market. Moscow: HSE Publ., pp. 292—334. (In Russian).
15. Davern M., Rodin H., Beebe T. J., Call K. T. (2005). The effect of income question design in health surveys on family income, poverty and eligibility estimates. Health Services Research, Vol. 40, No. 5, pp. 1534—1552. https://doi.org/10.1111/j.1475- 6773.2005.00416.x
16. Rogozin D., Manuilskaya K., Klimov I. (2006). Income Questions Testing. Socialnaya Realnost, No. 11, pp. 103—115. (In Russian).
17. Duncan G. J., Petersen E. (2001). The long and short of asking questions about income, wealth, and labor supply. Social Science Research, Vol. 30, No. 2, pp. 248—263. https://doi.org/10.1006/ssre.2000.0696
18. UNECE. (2007). Register-based statistics in the Nordic Countries. Review of best practices with focus on population and social statistics. New-York, Geneva: United Nations. http://www.unece.org/index.php?id=17470
19. Hansen K., Kneale D. (2013). Does how you measure income make a difference to measuring poverty? Evidence from the UK. Social Indicators Research, Vol. 110, No. 3, pp. 1119—1140. https://doi.org/10.1007/s11205-011-9976-5
20. Foley M. C. (1997). Poverty in Russia: Static and Dynamic Analyses. In: J. Klugman (еd.). Poverty in Russia: Public policy and private responses. EDI Development Study. Washington, DC: World Bank, pp. 65—90.
21. Hariri J. G., Lassen D. D. (2017). Income and outcomes: Social desirability bias distorts measurements of the relationship between income and political behavior. Public Opinion Quarterly, Vol. 81, No. 2, pp. 564—576. https://doi.org/10.1093/poq/nfw044
22. Abowd J. M., Stinson M. H. (2013). Estimating measurement error in annual job earnings: A comparison of survey and administrative data. Review of Economics and Statistics, Vol. 95, No. 5, pp. 1451—1467. https://doi.org/10.1162/REST_a_00352
23. Kim C., Tamborini C. R. (2014). Response error in earnings: An analysis of the survey of income and program participation matched with administrative data. Sociological Methods & Research, Vol. 43, No. 1, pp. 39—72. https://doi.org/10.1177/0049124112460371
24. Akkerman S., Admiraal W., Brekelmans M., Oost H. (2008). Auditing Quality of Research in Social Sciences. Quality & Quantity, Vol. 42, pp. 257—274. https:// doi.org/10.1007/s11135-006-9044-4
25. Kreiner C. T., Lassen D. D., Leth-Petersen S. (2015). Measuring the accuracy of survey responses using administrative register data: Evidence from Denmark. In: C. D. Carroll, T. F. Crossley, J. Sabelhaus (ed.). Improving the measurement of consumer expenditures. Chicago: University of Chicago Press, pp. 289—307. http://doi.org/10.7208/chicago/9780226194714.003.0011
26. Angel S., Heuberger R., Lamei N. (2018). Differences between household income from surveys and registers and how these affect the poverty headcount: Evidence from the Austrian SILC. Social Indicators Research, Vol. 138, No. 2, pp. 575—603. https://doi.org/10.1007/s11205-017-1672-7
27. Jansen W., Verhoeven W.-J., Robert P., Dessens J. (2013). The long and short of asking questions about income: A comparison using data from Hungary. Quality and Quantity, Vol. 47, No. 4, pp. 1957—1969. https://doi.org/10.1007/s11135-011-9636-5
28. Bollinger C. R., Hirsch B. T. (2013). Is earnings nonresponse ignorable? Review of Economics and Statistics, Vol. 95, No. 2, pp. 407—416. https://doi.org/10.1162/ REST_a_00264
29. Meyer B. D., Mok W. K. C., Sullivan J. X. (2015). Household surveys in crisis. Journal of Economic Perspectives. Vol. 29, No. 4, pp. 1—29. https://doi.org/10.1257/jep.29.4.199
30. Davern M., Rodin H., Beebe T. J., Call K. T. (2005). The effect of income question design in health surveys on family income, poverty and eligibility estimates. Health Services Research, Vol. 40, No. 5, pp. 1534—1552. https://doi.org/10.1111/j.1475- 6773.2005.00416.x
31. Micklewright J., Schnepf S.V. (2010). How reliable are income data collected with a single question? Journal of the Royal Statistical Society. Series A: Statistics in Society, Vol. 173, No. 2, pp. 409—429. https://doi.org/10.1111/j.1467-985X.2009.00632.x
32. Duncan G. J., Petersen E. (2001). The long and short of asking questions about income, wealth, and labor supply. Social Science Research, Vol. 30, No. 2, pp. 248—263. https://doi.org/10.1006/ssre.2000.0696
33. Moore J., Stinson L. L., Welniak Jr. E. J. (2000). Income measurement error in surveys. Journal of Official Statistics, Vol. 16, No. 4, pp. 331—361.
34. Hansen K., Kneale D. (2013). Does how you measure income make a difference to measuring poverty? Evidence from the UK. Social Indicators Research, Vol. 110, No. 3, pp. 1119—1140. https://doi.org/10.1007/s11205-011-9976-5
35. Schräpler J.-P. (2004). Respondent behavior in panel studies: A case study for income nonresponse by means of the German Socio-Economic Panel (SOEP). Sociological Methods and Research, Vol. 33, No. 1, pp. 118—156. https://doi.org/10.1177/0049124103262689
36. Hariri J. G., Lassen D. D. (2017). Income and outcomes: Social desirability bias distorts measurements of the relationship between income and political behavior. Public Opinion Quarterly, Vol. 81, No. 2, pp. 564—576. https://doi.org/10.1093/poq/nfw044
37. Slemrod J. (2016). Caveats to the research use of tax-return administrative data. National Tax Journal, Vol. 69, No. 4, pp. 1003—1020. https://doi.org/10.17310/ntj.2016.4.13
38. Kim C., Tamborini C. R. (2014). Response error in earnings: An analysis of the survey of income and program participation matched with administrative data. Sociological Methods & Research, Vol. 43, No. 1, pp. 39—72. https://doi.org/10.1177/0049124112460371
39. Tamborini C. R., Kim C. (2013). Are proxy interviews associated with biased earnings reports? Marital status and gender effects of proxy. Social Science Research, Vol. 42, No. 2, pp. 499—512. https://doi.org/10.1016/j.ssresearch.2012.11.004
40. Kreiner C. T., Lassen D. D., Leth-Petersen S. (2015). Measuring the accuracy of survey responses using administrative register data: Evidence from Denmark. In: C. D. Carroll, T. F. Crossley, J. Sabelhaus (ed.). Improving the measurement of consumer expenditures. Chicago: University of Chicago Press, pp. 289—307. http://doi.org/10.7208/chicago/9780226194714.003.0011
41. Valet P., Adriaans J., Liebig S. (2019). Comparing survey data and administrative records on gross earnings: nonreporting, misreporting, interviewer presence and earnings inequality. Quality and Quantity, Vol. 53, No. 1, pp. 471—491. https://doi.org/10.1007/s11135-018-0764-z
42. Jansen W., Verhoeven W.-J., Robert P., Dessens J. (2013). The long and short of asking questions about income: A comparison using data from Hungary. Quality and Quantity, Vol. 47, No. 4, pp. 1957—1969. https://doi.org/10.1007/s11135-011-9636-5
43. Ziliak J. P. (2015). Income, program participation, poverty, and financial vulnerability: Research and data needs. Journal of Economic and Social Measurement, Vol. 40, No. 1-4, pp. 27—68. https://doi.org/10.3233/JEM-150397
44. Meyer B. D., Mok W. K. C., Sullivan J. X. (2015). Household surveys in crisis. Journal of Economic Perspectives. Vol. 29, No. 4, pp. 1—29. https://doi.org/10.1257/jep.29.4.199
45. Micklewright J., Schnepf S.V. (2010). How reliable are income data collected with a single question? Journal of the Royal Statistical Society. Series A: Statistics in Society, Vol. 173, No. 2, pp. 409—429. https://doi.org/10.1111/j.1467-985X.2009.00632.x
46. Moore J., Stinson L. L., Welniak Jr. E. J. (2000). Income measurement error in surveys. Journal of Official Statistics, Vol. 16, No. 4, pp. 331—361.
47. Schräpler J.-P. (2004). Respondent behavior in panel studies: A case study for income nonresponse by means of the German Socio-Economic Panel (SOEP). Sociological Methods and Research, Vol. 33, No. 1, pp. 118—156. https://doi.org/10.1177/0049124103262689
48. Slemrod J. (2016). Caveats to the research use of tax-return administrative data. National Tax Journal, Vol. 69, No. 4, pp. 1003—1020. https://doi.org/10.17310/ntj.2016.4.13
49. Tamborini C. R., Kim C. (2013). Are proxy interviews associated with biased earnings reports? Marital status and gender effects of proxy. Social Science Research, Vol. 42, No. 2, pp. 499—512. https://doi.org/10.1016/j.ssresearch.2012.11.004
50. Valet P., Adriaans J., Liebig S. (2019). Comparing survey data and administrative records on gross earnings: nonreporting, misreporting, interviewer presence and earnings inequality. Quality and Quantity, Vol. 53, No. 1, pp. 471—491. https://doi.org/10.1007/s11135-018-0764-z
51. Ziliak J. P. (2015). Income, program participation, poverty, and financial vulnerability: Research and data needs. Journal of Economic and Social Measurement, Vol. 40, No. 1-4, pp. 27—68. https://doi.org/10.3233/JEM-150397
Review
For citations:
Cherkashina T.Yu. Measurement of population income: Variants of estimating biases. Voprosy Ekonomiki. 2020;(1):127-144. (In Russ.) https://doi.org/10.32609/0042-8736-2020-1-127-144