Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A survey of methods for macroeconomic forecasting:looking for perspective directions in russia

https://doi.org/10.32609/0042-8736-2016-6-45-75

Abstract

The paper describes the evolution of macroeconomic theory in the XX century and the development of empirical models for applied macroeconomic forecasting. A comparison of modern structural and non-structural methods for macroeconomic forecasting is made. We consider the experience of macroeconomic forecasting in Russia and reveal its weaknesses and prospects for improvement.

About the Authors

A. Pestova
Center for Macroeconomic Analysis and Short-Term Forecasting; Institute of Economic Forecasting, RAS; National Research University Higher School of Economics
Russian Federation


M. Mamonov
Center for Macroeconomic Analysis and Short-Term Forecasting, Institute of Economic Forecasting, RAS; National Research University Higher School of Economics
Russian Federation


References

1. Astafieva E., Turuntseva M. (2014). Forecasting using large data sets. Part 2. Moscow: RANEPA. (In Russian).

2. Ayvazyan S. A., Brodsky B. E., Sandoyan E. M., Voskanyan M. A., Manukyan D. E. (2013). Macroeconometric modeling of the economies of Russia and Armenia. II: Aggregated macroeconometric models of the national economies of Russia and Armenia. Prikladnaya Ekonometrika, Vol. 31, No. 3, pp. 7—31. (In Russian).

3. Borodin A., Gorbova E., Plotnikov S., Plushchevskaya Yu. (2008). Estimating potential output and other unobserved variables in a transmission mechanism model (The case of Russia). Proceedings of the II International scientific and practical conference, Minsk, May 19—20. Minsk: The National Bank of the Republic of Belarus, pp. 119—143. (In Russian).

4. Demidenko M., Karatchoun O., Korshunov D., Lipin A., Hrebichek G. (2016). System for analysis and macroeconomic forecasting of the Eurasian Economic Union. Moscow; St. Petersburg: Eurasian Economic Commission; Eurasian Development Bank. (In Russian).

5. Deryugina E., Ponomarenko A. (2015). A large Bayesian vector autoregression model for Russia. Bank of Russia Working Paper Series, No. 1. (In Russian).

6. Zamulin O., Styrin K. (2012). How to distinguish cause and effect? (2011 Nobel memorial prize in economics). Voprosy Ekonomiki, No. 1, pp. 4—20. (In Russian).

7. Ivashchenko S. M. (2013). Dynamic stochastic general equilibrium model with the banking sector and endogenous firm defaults. Zhurnal Novoy Ekonomicheskoy Assotsiatsii, Vol. 3, No. 19, pp. 27—50. (In Russian).

8. Malakhovskaya O. A., Minabutdinov A. R. (2013). Dynamic stochastic general equilibrium model for the export-oriented economy (Preprint No. WP12/2013/04). Moscow: HSE. (In Russian).

9. Mikusheva A. (2014). Estimation of dynamic stochastic general equilibrium models. Kvantil, No. 12, pp. 1—21. (In Russian).

10. Mikhaylenko K. V. (2005). Economic and mathematical support for scenario forecasts of socio-economic development of Russia in the medium term. Abstract of the thesis. Moscow: IEF RAS. (In Russian).

11. Polbin A. V. (2014). The econometric estimation of the structural macroeconomic model of the Russian economy. Prikladnaya Ekonometrika, Vol. 33, No. 1, pp. 3—29. (In Russian).

12. Porshakov A., Deryugina E., Ponomarenko A., Sinyakov A. (2015). Nowcasting and short-term forecasting of Russian GDP with a dynamic factor model. Bank of Russia Working Paper Series, No. 2. (In Russian).

13. Skrobotov A., Turuntseva M. (2015). Forecasting properties of VAR models: Application to the Russian data. Nauchnyi Vestnik IEP im. Gaydara, No. 8, pp. 39—43. (In Russian).

14. Styrin K., Potapova V. (2009). GDP leading indicator of RenCap-NES: Better and earlier. Moscow: NES, Renaissance Capital. (In Russian).

15. Turuntseva M. (2011). Forecasting in Russia: Overview of the main models. Ekonomicheskaya Politika, No. 1, pp. 193—202. (In Russian).

16. Turuntseva M., Astafieva E., Baeva M., Bozhechkova A., Buzaev A., Kiblitskaya T., Ponomarev Yu., Skrobotov A. (2015). Model short-term forecasts of socio-economic indicators of the Russian Federation. Nauchnyi Vestnik IEP im. Gaydara, No. 8, pp. 3—33. (In Russian).

17. Turuntseva M., Yudin A., Drobyshevskiy S., Kadochnikov P., Ponomarenko S. (2005). Some approaches to forecasting economic indicators (Scientific Papers No. 89). Moscow: Gaidar Institute for Economic Policy. (In Russian).

18. Uzyakov M. N., Brusentseva A. R., Govtvan O. J., Gusev M. S., Kaminova S. V., Mironova E. S., Savchishina K. E., Uzyakov R. M., Shirov A. A. (2009). Forecast of macroeconomic indicators of the Russian economy for 2009—2012. Problemy Prognozirovaniya, No. 4, pp. 3—25. (In Russian).

19. Shulgin A. G. (2014). Bayesian estimation of DSGE model with two monetary policy rules for Russia (Preprint No. WP12/2014/01). Moscow: HSE. (In Russian).

20. Banbura M., Giannone D., Reichlin L. (2010). Large Bayesian vector autoregressions. Journal of Applied Econometrics, Vol. 25, No. 1, pp. 71-92.

21. Banbura M., Giannone D., Lenza M. (2015). Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections. International Journal of Forecasting, Vol. 31, No. 3, pp. 739-756.

22. Banerjee A., Marcellino M., Masten I. (2008). Forecasting macroeconomic variables using diffusion indexes in short samples with structural change. In: D. Rapach, M. Wohar (eds.). Forecasting in the presence of structural breaks and model uncertainty. Bingley, UK: Emerald Group.

23. Barhoumi K., Darne O., Ferrara L. (2013). Dynamic factor models: A review of the literature. OECD Journal: Journal of Business Cycle Measurement and Analysis, Vol. 2013, No. 2, pp. 73-107.

24. Baumeister C., Liu P., Mumtaz H. (2010). Changes in the transmission of monetary policy: Evidence from a time-varying factor-augmented VAR. Bank of England Working Papers, No. 401.

25. Bernanke B. S., Boivin J., Eliasz P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics, Vol. 120, No. 1, pp. 387-422.

26. Blake A., Mumtaz H. (2012). Applied Bayesian econometrics for central bankers. CCBS Technical Handbook, No. 4. London: Centre for Central Banking Studies, Bank of England.

27. Box G. E. P., Jenkins G. M. (1970). Time series analysis, forecasting and control. San Francisco, CA: Holden-Day.

28. Brayton F., Tinsley P. (eds.) (1996). A guide to FRB/US. A macroeconomic model of the United States. Federal Reserve Board. Washington, DC.

29. Brayton F., Levin A., Lyon R., Williams J. C. (1997). The evolution of macro models at the Federal Reserve Board. Carnegie-Rochester Conference Series on Public Policy, No. 47, pp. 43-81.

30. Brillinger D. R. (1981). Time series: Data analysis and theory. San Francisco, CA: Holden-Day.

31. Chamberlain G., Rothschild M. (1983). Arbitrage, factor structure and mean-variance analysis in large asset markets. Econometrica, Vol. 51, No. 5, pp. 1305-1324.

32. Chari V. V., Kehoe P. J., McGrattan E. R. (2009). New Keynesian models: Not yet useful for policy analysis. American Economic Journal: Macroeconomics, Vol. 1, No. 1, pp. 242-266.

33. Chauvet M., Potter S. (2013). Forecasting output. In: A. Timmermann, G. Elliott (eds.). Handbook of Economic Forecasting, Vol. 2A. Amsterdam: Elsevier, pp. 141-194.

34. Christiano L., Eichenbaum M., Evans C. (2005). Nominal rigidities and the dynamic effects of a shock to monetary policy. Journal of Political Economy, Vol. 113, No. 1, pp. 1-45.

35. De Vroey M., Malgrange P. (2010). From the Keynesian revolution to the Klein-Goldberger model: Klein and the dynamization of Keynesian theory (Discussion paper No. 2010019). Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

36. De Vroey M., Malgrange P. (2011). The history of macroeconomics from Keynes’s general theory to the present (Discussion paper No. 2011028). Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

37. Del Negro M., Otrok C. (2008). Dynamic factor models with time-varying parameters: Measuring changes in international business cycles (Staff Report No. 326). Federal Reserve Bank of New York.

38. Del Negro M., Schorfheide F., Smets F., Wouters R. (2007). On the fit of new-Keynesian models. Journal of Business & Economics Statistics, Vol. 25, No. 2, pp. 123-149.

39. Demeshev B., Malakhovskaya O. (2015). Forecasting Russian macroeconomic indicators with BVAR (Working paper No. 105). Moscow: HSE.

40. Del Negro M., Otrok C. (2008). Dynamic factor models with time-varying parameters: Measuring changes in international business cycles (Staff Report No. 326). Federal Reserve Bank of New York.

41. Del Negro M., Schorfheide F., Smets F., Wouters R. (2007). On the fit of new-Keynesian models. Journal of Business & Economics Statistics, Vol. 25, No. 2, pp. 123-149.

42. Demeshev B., Malakhovskaya O. (2015). Forecasting Russian macroeconomic indicators with BVAR (Working paper No. 105). Moscow: HSE.

43. Diamond P. (1982). Aggregate demand management in search equilibrium. Journal of Political Economy, Vol. 90, No. 5, pp. 881-894.

44. Diebold F. X. (1998). The past, present, and future of macroeconomic forecasting. Journal of Economic Perspectives, Vol. 12, No. 2, pp. 175-192.

45. Diebold F. X., Rudebusch G. D. (1996). Measuring business cycles: A modern perspective. The Review of Economics and Statistics, Vol. 78, No. 1, pp. 67-77.

46. Doan T., Litterman R., Sims C. A. (1984). Forecasting and conditional projection using realistic prior distributions. Econometric Reviews, Vol. 3, No. 1, pp. 1-100.

47. Doz C., Giannone D., Reichlin L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. Journal of Econometrics, Vol. 164, No. 1, pp. 188-205.

48. Edge R. M., Kiley M. T., Laforte J. P. (2010). A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model. Journal of Applied Econometrics, Vol. 25, No. 4, pp. 720-754.

49. Eickmeier S., Lemke W., Marcellino M. (2011). Classical time-varying FAVAR models - Estimation, forecasting and structural analysis. CEPR Discussion Papers, No. 8321.

50. Engle R. F., Granger C. W. J. (1987). Cointegration and error correction: Representation, estimation and testing. Econometrica, Vol. 55, No. 2, pp. 251-276.

51. Fernández-Villaverde J. (2008). Horizons of understanding: A review of Ray Fair’s estimating how the macroeconomy works. Journal of Economic Literature, Vol. 46, No. 3, pp. 685-703.

52. Forni M., Hallin M., Lippi M., Reichlin L. (2000). The generalized dynamic-factor model: Identification and estimation. Review of Economics and Statistics, Vol. 82, No. 4, pp. 540-554.

53. Friedman M. (1968). The role of monetary policy. American Economic Review, Vol. 58, No. 1, pp. 1-17.

54. Geweke J. (1977). The dynamic factor analysis of economic time series. In: D. J. Aigner, A. S. Goldberger (eds.). Latent variables in socio-economic models. Amsterdam: North-Holland.

55. Geweke J., Whiteman C. (2006). Bayesian forecasting. In: G. Elliott, C. W. J. Granger, A. Timmermann (eds.). Handbook of economic forecasting, Vol. 1. Amsterdam: Elsevier, pp. 3-80.

56. Ghysels E., Sinko A., Valkanov R. (2006). MIDAS regressions: Further results and new directions. Econometric Reviews, Vol. 26, No. 1, pp. 53-90.

57. Giacomini R. (2015). Economic theory and forecasting: Lessons from the literature. Econometrics Journal, Vol. 18, No. 2, pp. C22-C41.

58. Giannone D., Lenza M., Primiceri G. E. (2015). Prior selection for vector autoregressions. The Review of Economics and Statistics, Vol. 97, No. 2, pp. 436-451.

59. Goodfriend M., King R. (1997). The new neo-classical synthesis and the role of monetary policy. NBER Macroeconomics Annual, pp. 231-283.

60. Granger C. W. J. (1969). Investigating causal relations by econometric models and cross- spectral methods. Econometrica, Vol. 37, No. 3, pp. 424-438.

61. Granger C. W. J. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics, Vol. 16, No. 1, pp. 121-130.

62. Griliches Z. (1968). The Brookings model volume: A review article. Review of Economics and Statistics, Vol. 50, No. 2, pp. 215-234.

63. Hamilton J. D. (1989). A new approach to the economic analysis of nonstationary time-series and the business cycle. Econometrica, Vol. 57, No. 2, pp. 357-384.

64. Hamilton J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

65. Hicks J. R. (1937). Mr. Keynes and the classics. Econometrica, Vol. 5, No. 2, pp. 147-159.

66. Kadiyala K. R., Karlsson S. (1993). Forecasting with generalized Bayesian vector autoregressions. Journal of Forecasting, Vol. 12, No. 3-4, pp. 365-378.

67. Kadiyala K. R., Karlsson S. (1997). Numerical methods for estimation and inference in Bayesian VAR models. Journal of Applied Econometrics, Vol. 12, No. 2, pp. 99-132.

68. Keynes J. M. (1936). The general theory of employment, interest, and money. London: Macmillan.

69. Klein L. R. (1950). Economic fluctuations in the United States, 1921-1941. N. Y.: John Wiley.

70. Klein L. R., Goldberger A. S. (1955). An econometric model of the United States, 1929-52. Amsterdam: North-Holland.

71. Knoop T. (2009). Recessions and depressions: Understanding business cycles. 2nd ed. Westport, CT: Praeger.

72. Krolzig H. (1997). Markov-switching vector autoregressions: Modelling, statistical inference, and application to business cycle analysis. Berlin: Springer.

73. Kydland F., Prescott E. (1977). Rules rather than discretion: The inconsistency of optimal plans. Journal of Political Economy, Vol. 85, No. 3, pp. 473-491.

74. Kydland F., Prescott E. (1982). Time to build and aggregate fluctuations. Econometrica, Vol. 50, No. 6, pp. 1345-1370.

75. Lawley D. N., Maxwell A. E. (1971). Factor analysis in a statistical method. London: Butterworth.

76. Litterman R. B. (1979). Techniques of forecasting using vector autoregressions. (Working Paper, No. 115). Federal Reserve Bank of Minneapolis.

77. Litterman R. B. (1986). Forecasting with Bayesian vector autoregressions - 5 years of experience. Journal of Business and Economic Statistics, Vol. 4, No. 1, pp. 25-38.

78. Lucas R. E. (1972). Expectations and the neutrality of money. Journal of Economic Theory, Vol. 4, No. 2, pp. 103-124.

79. Lucas R. E. (1976). Econometric policy evaluation: A critique. In: K. Brunner, A. Meltzer (eds.). The Phillips curve and the labor market. Carnegie-Rochester Conference Series on Public Policy, Vol. 1. Amsterdam: North-Holland, pp. 19-46.

80. Lutkepohl H. (2005). New introduction to multiple time series analysis. Berlin: Springer.

81. Mankiw N. (1985). Small menu costs and large business cycles: A macroeconomic modeling of monopoly. Quarterly Journal of Economics, Vol. 100, No. 2, pp. 529-538.

82. Mariano R. S., Murasawa Y. (2003). A new coincident index of business cycles based on monthly and quarterly series. Journal of Applied Econometrics, Vol. 18, No. 4, pp. 427-443.

83. Nelson C. R. (1972). The prediction performance of the FRB-MIT-PENN model of the US economy. American Economic Review, Vol. 62, No. 5, pp. 902-917.

84. Nelson C. R., Plosser C. I. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, Vol. 10, No. 2, pp. 139-162.

85. Phelps E., Taylor J. (1977). Stabilizing powers of monetary policy under rational expectations. Journal of Political Economy, Vol. 85, No. 1, pp. 163-190.

86. Phillips W. (1958). The relationship between unemployment and the rate of change of money wages in the United Kingdom, 1861-1957. Economica, Vol. 25, No. 100, pp. 283-299.

87. Qin D. (2011). Rise of VAR modelling approach. Journal of Economic Surveys, Vol. 25, No. 1, pp. 156-174.

88. Ramey V. (2016). Macroeconomic shocks and their propagation. NBER Working Papers, No. 21978.

89. Rotemberg J., Woodford M. (1997). An optimization-based econometric framework for the evaluation of monetary policy. In: B. S. Bernanke, J. Rotemberg (eds.). NBER Macroeconomics Annual 1997. Cambridge, MA: MIT Press, pp. 297-346.

90. Sargent T. J., Sims C. A. (1977). Business cycle modelling without pretending to have too much a priori economic theory. In: New methods in business cycle research: Proceedings from a conference. Minneapolis, MN: Federal Reserve Bank of Minneapolis, pp. 45-109.

91. Sсhorfheide F. (2011). Estimation and evaluation of DSGE models: Progress and challenges (Working paper, No. 11-7). Federal Reserve Bank of Philadelphia.

92. Shapiro C., Stiglitz J. E. (1984). Equilibrium unemployment as worker discipline device. American Economic Review, Vol. 74, No. 3, pp. 433-444.

93. Sims C. A. (1980). Macroeconomics and reality. Econometrica, Vol. 48 , No. 1, pp. 1-48.

94. Sims C. A. (1981). An autoregressive index model for the U.S. 1948-1975. In: J. Kmenta, J. B. Ramsey (eds.). Large-scale macro-econometric models. Amsterdam: North-Holland, pp. 283-327.

95. Smets F., Wouters R. (2003). An estimated dynamic stochastic general equilibrium of the Euro Area. Journal of the European Economic Association, Vol. 1, No. 5, pp. 1123-1175.

96. Smets F., Wouters R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. American Economic Review, Vol. 97, No. 3, pp. 586-606.

97. Stock J. H., Watson M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, Vol. 20, No. 2, pp. 147-162.

98. Stock J. H., Watson M. W. (2016). Factor models and structural vector autoregressions in macroeconomics. In: J. B. Taylor, H. Uhlig (eds.). Handbook of Macroeconomics, Vol. 2 (forthcoming).

99. Tinbergen J. (1939). Statistical testing of business-cycle theories. Business cycles in the United States of America, 1919-1932. Vol. 2. Geneva: League of Nations.

100. Tovar C. E. (2009). DSGE models and central banks. Economics: The Open-Access, Open-Assessment E-Journal, Vol. 3, pp. 1-31.

101. Uhlig H. (2005). What are the effects of monetary policy on output? Results from an agnostic identification procedure. Journal of Monetary Economics, Vol. 52, No. 2, pp. 381-419.

102. Wang M. C. (2009). Comparing the DSGE model with the factor model: An out-of- sample forecasting experiment. Journal of Forecasting, Vol. 28, No. 2, pp. 167-182.

103. Wolters M. H. (2015). Evaluating point and density forecasts of DSGE models. Journal of Applied Econometrics, Vol. 30, No. 1, pp. 74-96.

104. Woodford M. (2009). Convergence in macroeconomics: Elements of the new synthesis. American Economic Journal: Macroeconomics, Vol. 1, No. 1, pp. 267-279.

105. Zellner A. (1971). An introduction to Bayesian inference in econometrics. New York: Wiley.


Review

For citations:


Pestova A., Mamonov M. A survey of methods for macroeconomic forecasting:looking for perspective directions in russia. Voprosy Ekonomiki. 2016;(6):45-75. (In Russ.) https://doi.org/10.32609/0042-8736-2016-6-45-75

Views: 1714


ISSN 0042-8736 (Print)