Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

General Equilibrium Theory in Soviet Economic Science: Bibliometric Analysis

https://doi.org/10.32609/0042-8736-2014-3-106-125

Abstract

This paper is the first attempt at quantitative and qualitative analysis of the Soviet literature on general equilibrium theory in 1960-1990s. We divide the papers into four subgroups: von Neumann-Gale class of models and equilibrium growth; Arrow-Debreu class of models; disequilibrium theory; other branches of general equilibrium theory. Bibliometric analysis shows that von Neumann-Gale class of models was the most popular one in the Soviet mathematical economics.

About the Author

E. Malkov
National Research University Higher School of Economics (Moscow, Russia)
Russian Federation


References

1. Arushanyan I., Belenky V., Biryukova E. (1985). Closed Dynamic Model of Stationary Growth for Scenario Analysis of Interrelations between Development of Power System and Economy of the USSR // Ekonomika i Matematicheskie Metody. Vol. 21, No 5. P. 810—823.

2. Ashmanov S. (1980). Mathematical Models and Methods in Economics. Moscow: MSU Publ.

3. Belenky V. (1993). On the Representation of Gale Technology with its Bellman Operator // Ekonomika i Matematicheskie Metody. Vol. 29, No 2. P. 262—267.

4. Belenky V., Arushanyan I. (1993). Model of Transition to a New Technology under Normative Consumption Growth // Ekonomika i Matematicheskie Metody. Vol. 29, No 4. P. 642—650.

5. Belkin V., Ivanter V., Konstantinov N., Pan V. (1975). Modification of Balanced “Income-Goods” into Equilibrium Model // Ekonomika i Matematicheskie Metody. Vol. 11, No 6. P. 1037—1049.

6. Berezneva T., Bereznev V. (1985). On Computational Procedures of Equilibrium Seeking // Optimizacia i Upravlenie. Moscow: MSU Publ. P. 3—15.

7. Berezneva T. (1988). On the Convergence of Price Regulation Processes under Monotonic Demand Function // Ekonomika i Matematicheskie Metody. Vol. 24, No 2. P. 313—318.

8. Borisov K. (1987). Turnpike Properties of Optimal Trajectories in Models of Economic Dynamics // Optimizatsia. No 41. P. 76—87.

9. Braverman E. (1972). Model of Production with Disequilibrium Prices // Ekonomika i Matematicheskie Metody. Vol. 8, No 2. P. 175—190.

10. Braverman E., Levin M. (1981). Disequilibrium Models of Economic Systems. Moscow: Nauka.

11. Busygin V., Zhelobodko E., Tsyplakov A. (2003). Microeconomics—3. Novosibirsk: SB RAS Publ.

12. Vasiliev V. (1992). On Edgeworth Hypothesis for Lindahl Economy with Aggregated Production // Optimizatsia. No 51. P. 89—115.

13. Vasiliev V., Marakulin V. (1990). Non-Classical Markets, Mechanisms of Group Choice and Related Questions // Optimizatsia. No 47. P. 7—111.

14. Vilkas E. (1986). Efficiency of Allocation in Models of Economic Equilibrium // Ekonomika i Matematicheskie Metody. Vol. 22, No 4. P. 704—713.

15. Volkonsky V. (1973). Principles of Optimal Planning. Moscow: Ekonomika.

16. Granberg A. (ed.) (1971). Methods and Models of Territorial Planning. Novosibirsk: Institute of Economics and Industrial Engineering, SB USSR Academy of Sciences Publ.

17. Granberg A. (1990). Problems of Interregional Economic Relations // Ekonomika i Matematicheskie Metody. Vol. 26, No 1. P. 93—104.

18. Danilov V. (1979). Economic Equilibrium under Disequilibrium Prices // Proceedings of Soviet-Polish Workshop on Mathematical Methods in Planning. Moscow: CEMI, USSR Academy of Sciences Publ.

19. Danilov V., Sotskov A. (1985). Pure Exchange under Exchange Values // Problem of Equilibrium and Choice in Economics. Moscow: Nauka. P. 3—18.

20. Danilchenko T., Olzhabaev B. (1991). Economic Equilibrium and Problems of Linear Complementarity. Moscow: Dorodnicyn Computing Centre of RAS Publ.

21. Efimov B., Boulogne P. (1977). Existence of Equilibrium in Fourgeaud Model with Continuum of Consumers // Modeling of Economic Processes. Moscow: MSU Publ.

22. Efimov B., Shapovalov A. (1981). Model of Equilibrium with Taxes on ¬Exchange // Ekonomika i Matematicheskie Metody. Vol. 17, No 2. P. 394—396.

23. Zak F. (1981). Stability of Economic Equilibrium // Methods of Extremal Problems Theory in Economics / V. Levin (ed.). Moscow: Nauka. P. 72—106.

24. Zaslavsky A. (1989). Turnpike Theorems in Models with Variable Technology // Ekonomika i Matematicheskie Metody. Vol. 25, No 1. P. 135—141.

25. Kalendzhyan S. (1990). On the Development of Mathematical Economics in 60s. Working Paper. Moscow: CEMI, USSR Academy of Sciences Publ.

26. Kantorovich L., Makarov V. (1984). Prices and Production Efficiency // Ekonomika i Matematicheskie Metody. Vol. 20, No 1. P. 28—41.

27. Karlin S. (1964). Mathematical Methods and Theory in Games, Programming, and Economics. Moscow: Mir.

28. Katyshev P., Petrakov N. (1984). Stochastic Equilibrium Models // Ekonomika i Matematicheskie Metody. Vol. 20, No 2. P. 295—308.

29. Kornai J. (1972). On the Theory of Disequilibrium // Ekonomika i Matematicheskie Metody. Vol. 7, No 5. P. 681—697.

30. Kornai J., Simonovits A. (1976). Control Problems in von Neumann Economic Systems // Ekonomika i Matematicheskie Metody. Vol. 12, No 6. P. 1125—1140.

31. Kornai J., Weibull J. (1981). Generalized Market Equilibrium in a Shortage Economy: A Queue Model // Ekonomika i Matematicheskie Metody. Vol. 17, No 5. P. 936—954.

32. Koshevoy G. (1988). Theorems on Equilibria in Economic Models with Two Types of Prices // Optimizatsia. No 43. P. 130—141.

33. Laricheva G. (1983). Dynamic Systems Generated by Quasi-Homogeneous Multiciphered¬ ¬Mappings // Optimizatsia. No. 33. P. 111—123.

34. Makarov V. (1962). On the Equilibrium Condition in the von Neumann Model // Siberian Mathematical Journal. Vol. 3, No 3. P. 476—478.

35. Makarov V. (1986). On the Contemporary Development of EconomicMathematical Tools // Ekonomika i Matematicheskie Metody. Vol. 23, No 3. P. 412—428.

36. Makarov V., Rubinov A. (1973). Mathematical Theory of Economic Dynamics and Equilibrium. Moscow: Nauka.

37. Makarov V., Vasiliev V., Kozyrev A., Marakulin V. (1982). On Some Problems and Results of Contemporary Mathematical Economics // Optimizatsia. No 30. P. 6—85.

38. Makarov V., Vasiliev V., Kozyrev A., Marakulin V. (1986). Equilibrium, Rationing and Stability // Optimizatsia. No 38. P. 7—120.

39. Marakulin V. (1981). Inefficiency of Equilibrium in Smooth Economies with Utility Functions of the General Type // Optimizatsia. No 27. P. 44—64.

40. Mityagin B. (ed.) (1974a). Mathematical Economics and Functional Analysis. Moscow: Nauka.

41. Mityagin B. (ed.) (1974b). Mathematical Economics. Moscow: Mir.

42. Mikhalevsky B. (1970). Single-Sector Dynamic Model with Structural Disequilibrium // Ekonomika i Matematicheskie Metody. Vol. 6, No 4. P. 510—520.

43. Movshovich S. (1985). The Axiom of Revealed Preference and Processes of Establishing an Equilibrium // Ekonomika i Matematicheskie Metody. Vol. 21, No 2. P. 297—303.

44. Movshovich S. (1988a). Price Regulation and Queues // Ekonomika i Matematicheskie Metody. Vol. 24, No 2. P. 305—312.

45. Movshovich S. (1988b). Price Regulation and Rationing // Ekonomika i Matematicheskie Metody. Vol. 24, No 5. P. 873—883.

46. Movshovich S. (1992). A Disequilibrium Economy with Compensating Demand // Ekonomika i Matematicheskie Metody. Vol. 28, No 4. P. 598—611.

47. Morishima M. (1972). Equilibrium, Stability and Growth: A Multi-Sectoral Analysis. ¬Moscow: Fizmatlit.

48. Nikaido H. (1972). Convex Structures and Economic Theory. Moscow: Mir.

49. Pak O. (1982). Quasi-Rates of Growth and Equilibrium States in von Neumann-Gale Dynamic Model // Optimizatsia. No 29. P. 92—102.

50. Petrov A., Pospelov I., Shananin A. (1996). An Essay in Mathematical Modeling of Economy. Moscow: Energoatomizdat.

51. Polterovich V. (1973). Economic Equilibrium and the Optimum // Ekonomika i Matematicheskie Metody. Vol. 9, No 5. P. 838—845.

52. Polterovich V. (1976). Models of Equilibrium Economic Growth // Ekonomika i Matematicheskie Metody. Vol. 12, No 3. P. 527—540.

53. Polterovich V. (1978). Equilibrium Trajectories of Economic Growth // Methods of Functional Analysis in Mathematical Economics. Moscow: Nauka. P. 56—97.

54. Polterovich V. (1980). Optimal Allocation of Goods under Disequilibrium Prices // Ekonomika i Matematicheskie Metody. Vol. 16, No 4. P. 746—759.

55. Polterovich V. (1990). Equilibrium and Economic Mechanism. ¬Moscow: Nauka.

56. Rubinov A. (1975). Optimal Paths in von Neumann-Gale Models with a Strict Equilibrium State // Optimizatsia. No 17. P. 40—45.

57. Rubinov A. (1987). Equilibrium Mechanisms of Efficient Economic Development // Optimizatsia. No 41. P. 50—59.

58. Rubinshtein A. (1973). Characteristics of Equilibrium States in a Linear Model of International Economic Relations // Optimizatsia. No 11(28). P. 65—75.

59. Rubinshtein A. (1974). A Linear Model of International Economic Relations // Ekonomika i Matematicheskie Metody. Vol. 10, No 5. P. 900—911.

60. Rubinshtein A. (1979). On the Algorithm of Equilibrium Seeking in a Model of Interregional Economic Relations // Ekonomika i Matematicheskie Metody. Vol. 15, No 6. P. 1214—1218.

61. Friedman A. (1993). Equilibrium in a Model of Mixed Economy // Ekonomika i Matematicheskie Metody. Vol. 29, No 1. P. 138—146.

62. Zweynert J. (2008). Eine Geschichte des Ökonomischen Denkens in Russland: 1805—1905. Moscow: HSE Publ.

63. Cheremnykh Y. (1984). Turnpike Approach as a Tool for Analysis of Long-Run Processes in National Economy // Ekonomika i Matematicheskie Metody. Vol. 20, No 1. P. 98—108.

64. Chugunov P. (1988). Equilibria and SemiEquilibria in Economics with Rationing // Optimizatsia. No 43. P. 142—160.

65. Shmyrev V. (1983). Algorithms of Equilibrium Seeking in Exchange Models with Fixed Budgets // Optimizatsia. No 31. P. 137—155.

66. Shmyrev V. (1989b). On the Economic Production-Exchange Model of Arrow—Debreu Type // Optimizatsia. No 46. P. 68—95.

67. Boldyrev I., Kirtchik O. (2013). General Equilibrium Theory Behind the Iron Curtain: the Case of Victor Polterovich // Basic Research Program Working Papers Series: Humanities WP BRP 14/HUM/2013.

68. Danilov V., Sotskov A. (1990). A Generalized Economic Equilibrium // Journal of Mathematical Economics. Vol. 19, No 4. P. 341-356.

69. Debreu G. (1991). The Mathematization of Economic Theory // American Economic Review. Vol. 81, No 1. P. 1-7.

70. Gale D. (1956). The Closed Linear Model of Production // H. W. Kuhn, A. W. Tucker (eds.) Linear Inequalities and Related Systems. Princeton: Princeton University Press. P. 285-303.

71. Makarov V. (1981). Some Results on General Assumptions about the Existence of Economic Equilibria // Journal of Mathematical Economics. Vol. 8, No 1. P. 87-101.

72. Polterovich V. (1983). Equilibrium Trajectories of Economic Growth // Econometrica. Vol. 51, No 3. P. 693-730.

73. Polterovich V. (1990). Equilibrated States and Optimal Allocations of Resources Under Rigid Prices // Journal of Mathematical Economics. Vol. 19, No 3. P. 255-268.

74. Polterovich V. (1993). Rationing, Queues, and Black Markets // Econometrica. Vol. 61, No 1. P. 1-28.

75. Scarf H. (1973). The Computation of Economic Equilibria. New Haven: Yale University Press.

76. Weintraub E. R. (1985). General Equilibrium Analysis: Studies in Appraisal. Cambridge: Cambridge University Press.

77. Березнева Т. Д., Березнев В. А. (1985). О вычислительных процедурах нахождения равновесия, основанных на МЦТ // Оптимизация и управление. М.: Изд-во МГУ. С. 3-15


Review

For citations:


Malkov E. General Equilibrium Theory in Soviet Economic Science: Bibliometric Analysis. Voprosy Ekonomiki. 2014;(3):106-125. (In Russ.) https://doi.org/10.32609/0042-8736-2014-3-106-125

Views: 869


ISSN 0042-8736 (Print)