

Исследование делового климата в российской науке: апробация подхода
https://doi.org/10.32609/0042-8736-2025-6-114-136
Аннотация
Представлены новаторский подход к оценке ситуации (делового климата) в сфере науки и технологий, а также краткие результаты его апробации в ходе трех масштабных опросов руководителей научных организаций и вузов, проведенных в 2017, 2022 и 2024 гг. Методология основана на теории и практике количественных, в том числе статистических, измерений этой сферы, проведения конъюнктурных обследований организаций, оценки научно-технологической политики и ее инструментов. Продемонстрированы возможности и преимущества предложенного аналитического инструментария для выявления драйверов и барьеров на пути развития данной сферы в России, исследования изменений, определения востребованности мер государственной поддержки.
Об авторах
М. А. ГершманРоссия
Гершман Михаил Анатольевич, к. э. н., директор Центра научно-технической, инновационной и информационной политики Института статистических исследований и экономики знаний
Москва
Л М Гохберг
Россия
Гохберг Леонид Маркович
, д. э. н., проф., первый проректор, директор ИСИЭЗ НИУ ВШЭ
Москва
Т. Е Кузнецова
Россия
Кузнецова Татьяна Евгеньевна, к. э. н., научный руководитель Центра научно-технической, инновационной и информационной политики ИСИЭЗ
Москва
Список литературы
1. Власова В., Кузнецова Т., Рудь В. (2017). Анализ драйверов и ограничений развития России на основе информации Глобального инновационного индекса // Вопросы экономики. № 8. С. 24—41. https://doi.org/10.32609/0042-8736-2017-8-24-41
2. Гершман М. А., Евсеева М. В., Каменева Е. Г., Лапочкина В. В. (2025). Субсидирование научно-производственной кооперации в России: оценка эффектов // Вопросы экономики. № 3. С. 48—75. https://doi.org/10.32609/0042-8736-2025-3-48-75
3. Гершман М., Кузнецова Т. (2014). Оплата труда по результатам в российском секторе исследований и разработок // Форсайт. Т. 8, № 3. С. 58—69. [Gershman M., Kuznetsova T. (2014). Performance-related pay in the Russian R&D sector. Foresight—Russia, Vol. 8, No. 3, pp. 58—69.
4. Гохберг Л. M. (2003). Статистика науки. М.: Теис.
5. Гохберг Л. М. (ред.) (2019). Деловой климат в российской науке — Doing science. М.: НИУ ВШЭ.
6. Гохберг Л. М. (ред.) (2024). Будущее мировой науки. М.: Издат. дом ВШЭ.
7. Гохберг Л. М., Гершман М. А. (ред.) (2023). Делаем науку в России: деловой климат в сфере науки и технологий. М.: ИСИЭЗ ВШЭ. https://doi.org/10.17323/978-5-7598-3003-0
8. НИУ ВШЭ (2025). Индикаторы науки: 2025: стат. сб. М.: ИСИЭЗ ВШЭ.
9. Abramo G., D’Angelo C. A., Caprasecca A. (2009). Allocative efficiency in public research funding: Can bibliometrics help? Research Policy, Vol. 38, No. 1, pp. 206—215. https://doi.org/10.1016/j.respol.2008.11.001
10. Allard G., Martinez C. A., Williams C. (2012). Political instability, pro-business market reforms and national systems of innovations. Research Policy, Vol. 41, pp. 638— 651. https://doi.org/10.1016/j.respol.2011.12.005
11. Ankrah S., Omar A. T. (2015). Universities—industry collaboration: A systematic review. Scandinavian Journal of Management, Vol. 31, No. 3, pp. 387—408. https:// doi.org/10.1016/j.scaman.2015.02.003
12. Bartle D., Morris M. (2010). Evaluating the impacts of government business assistance programmes: Approaches to testing additionality. Research Evaluation, Vol. 19, No. 4, pp. 275—280. https://doi.org/10.1093/reeval/19.4.275
13. Becker S., Wohlrabe K. (2008). Micro data at the Ifo Institute for Economic Research — The “Ifo Business Survey” usage and access. Schmollers Jahrbuch, Vol. 128, No. 2, pp. 307—319. https://doi.org/10.3790/schm.128.2.307.
14. Bell S., Cingranelli D., Murdie A., Caglayan A. (2013). Coercion, capacity and coordination: Predictors of political violence. Conflict Management and Peace Science, Vol. 30, No. 3, pp. 240—262. https://doi.org/10.1177/0738894213484032
15. Bloch C., Sørensen M. P., Graversen E. K., Schneider J. W., Schmidt E. K., Aagaard K., Mejlgaard N. (2014). Developing a methodology to assess the impact of research grant funding: A mixed methods approach. Evaluation and Program Planning, Vol. 43, pp. 105—117. https://doi.org/10.1016/j.evalprogplan.2013.12.005
16. Blume-Kohout M. E. (2022). The case of the interrupting funder: Dynamic effects of R&D funding and patenting in U.S. universities. Journal of Technology Transfer, Vol. 48, No. 4, pp. 1221—1242. https://doi.org/10.1007/s10961-022-09965-7
17. Carvalho А. (2018). Wishful thinking about R&D policy targets: What governments promise and what they actually deliver. Science and Public Policy, Vol. 45, No. 3, pp. 373—391. https://doi.org/10.1093/scipol/scx069
18. Cerny P., Prichard A. (2017). The new anarchy: Globalisation and fragmentation in world politics. Journal of International Political Theory, Vol. 13, No. 3, pp. 378—394. https://doi.org/10.1177/1755088217713765.
19. Chou Y.-C., Hsu Y.-Y., Yen H.-Y. (2008). Human resources for science and technology: Analyzing competitiveness using the analytic hierarchy process. Technology in Society, Vol. 30, No. 2, pp. 141—153. https://doi.org/10.1016/j.techsoc.2007.12.007
20. Crespi F., Caravella S. et al. (2021). European technological sovereignty: An emerging framework for policy strategy. Intereconomics: Review of European Economic Policy Centre for European Policy Studies, Vol. 56, No. 6, pp. 348—354. https://doi.org/10.1007/s10272-021-1013-6
21. Cunningham P., Gök A., Larédo P. (2016). The impact of direct support to R & D and innovation in firms. In: J. Edler, P. Cunningham, A. Gök, P. Shapira (eds.). Handbook of innovation policy impact. Cheltenham: Edward Elgar, pp. 54—107. https://doi.org/10.4337/9781784711856.00010
22. Edler J., Blind K., Kroll H., Schubert T. (2023). Technology sovereignty as an emerging frame for innovation policy. Defining rationales, ends and means. Research Policy, Vol. 52, No. 6. https://doi.org/10.1016/j.respol.2023.104765
23. Edler J., Cunningham P., Gök A., Shapira P. (eds.) (2016). Handbook of innovation policy impact. Cheltenham: Edward Elgar.
24. Erkel-Rousse H., Minodier C. (2009). Do business trend surveys in industry and services help in forecasting GDP growth? A real-time analysis on French data. INSEE Working Paper, No. G2009/03. Institut National de la Statistique et des Études Économiques.
25. European Commission (2004). Evaluating EU activities: A practical guide for the Commission services. Brussels: European Commission.
26. European Commission (2016). The joint harmonised EU programme of business and consumer surveys: User guide. Brussels: European Commission.
27. European Commission (2023a). Research, innovation, and technology policy in times of geopolitical competition. Luxembourg: Publications Office of the European Union. https://doi.org/10.2777/745596
28. European Commission (2023b). S&T&I for 2050: Science, technology and innovation for ecosystem performance — Accelerating sustainability transitions. Luxembourg: Publications Office of the European Union. https://doi.org/10.2777/100029
29. Freeman C. (1995). The “national system of innovation” in historical perspective. Cambridge Journal of Economics, Vol. 19, No. 1, pp. 5—24. https://doi.org/10.1093/oxfordjournals.cje.a035309
30. Frietsch R., Reiß T., Schmoch U. (2024). Development of innovation monitoring and innovation indicators in the past 50 years. In: J. Edler, R. Walz (eds.). Systems and innovation research in transition. Research questions and trends in historical perspective. Cham: Springer. https://doi.org/10.1007/978-3-031-66100-6_3
31. Gassler H., Schibany A. (2011). “Useless” science: How to evaluate performance of basic research. Foresight—Russia, Vol. 5, No. 1, pp. 40—47. https://doi.org/ 10.17323/1995-459x.2011.1.40.47
32. Georghiou L. (1995). Research evaluation in European national science and technology systems. Research Evaluation, Vol. 5, No. 1, pp. 3—10. https://doi.org/10.1093/rev/5.1.3
33. Gershman M., Kuznetsova T. (2016). The future of Russian science through the prism of public policy. Foresight, Vol. 18, No. 3, pp. 320—339. https://doi.org/10.1108/ FS-06-2014-0037
34. Godin B. (2001). Measuring output: When economics drive science and technology measurements. Project on the history and sociology of S&T statistics. Montreal: OST.
35. Godin B. (2009). What is science? Defining science by numbers, 1920—2000 (part 2). Foresight—Russia, Vol. 3, No. 3, pp. 68—81. https://doi.org/10.17323/1995- 459x.2009.3.68.81
36. Godin B. (2010). Conceptual frameworks of science, technology and innovation policy. Foresight—Russia, Vol. 4, No. 2, pp. 34—43. https://doi.org/10.17323/1995- 459x.201.2.34.43
37. Gök A., Edler J. (2012). The use of behavioural additionality evaluation in innovation policy making. Research Evaluation, Vol. 21, No. 4, pp. 306—318. https://doi.org/10.1093/reseval/rvs015
38. Gokhberg L. (2013). Indicators for science, technology and innovation on the crossroad to foresight. In: D. Meissner, L. Gokhberg, A. Sokolov (eds.). Science, technology and innovation policy for the future: Potentials and limits of foresight studies. Berlin: Springer, pp. 257—288. https://doi.org/10.1007/978-3-642-31827-6_15
39. Gokhberg L., Shmatko N., Auriol L. (eds.) (2016). The science and technology labor force: The value of doctorate holders and development of professional careers. Dordrecht: Springer. https://doi.org/10.1007/978-3-319-27210-8
40. Industrial Research Institute (2017). 2017 R&D trends forecast: Results from the Industrial Research Institute’s annual survey: Slowing economies slow R&D investments and mute optimism. Research—Technology Management, Vol. 60, No. 1, pp. 18—25. https://doi.org/10.1080/08956308.2017.1255049
41. IMF (2023). World economic outlook: Navigating global divergences. Washington, DC: International Monetary Fund. https://doi.org/10.5089/9798400235801.081 Jordan G. B. (2010). A theory-based logic model for innovation policy and evaluation. Research Evaluation, Vol. 19, No. 4, pp. 263—273. https://doi.org/10.3152/095820210x12827366906445
42. Kuhlmann S. (2003). Evaluation of research and innovation policies: A discussion of trends with examples from Germany. International Journal of Technology Management, Vol. 26, No. 2—4, pp. 131—149. https://doi.org/10.1504/ijtm.2003.003366
43. Lakomý M., Hlavová R., Machackova H. (2019). Open science and the science—society relationship. Society, Vol. 56, pp. 246—255. https://doi.org/10.1007/s12115-019- 00361-w
44. Lipkind T., Kitrar L., Ostapkovich G. (2019). Russian business tendency surveys by HSE and Rosstat. In: S. Smirnov, A. Ozyildirim, P. Picchetti (eds.). Business cycles in BRICS. Cham: Springer, pp. 233—251. https://doi.org/10.1007/978- 3-319-90017-9_13
45. Lola I., Bakeev M. (2024). Technology adoption expectations in the face of temporal uncertainty: An analysis of survey data from manufacturing firms. Technology Analysis & Strategic Management, Vol. 36, No. 1, pp. 45—58. https://doi.org/10.1080/09537325.2021.2020751
46. Lundvall B.-Е. (1992). National systems of innovation: Towards a theory of innovation and interactive learning. London: Pinter.
47. McLaughlin J. A., Jordan G. B. (2015). Using logic models. In: K. E. Newcomer, P. Hatry, J. S. Wholey (eds.). Handbook of practical program evaluation. Hoboken, NJ: John Wiley & Sons, pp. 62—87. https://doi.org/10.1002/9781119171386.ch3
48. Meissner D., Gokhberg L., Kuzminov Y., Cervantes M., Schwaag Serger S. (2021). Knowledge triangle targeted science, technology and innovation policy. In: The knowledge triangle. Changing higher education and research management paradigm. Cham: Springer, pp. 3—15. https://doi.org/10.1007/978-3-030-81346- 8_1
49. Meissner D., Kergroach S. (2021). Innovation policy mix: Mapping and measurement. Journal of Technology Transfer, Vol. 46, pp. 197—222. https://doi.org/10.1007/s10961-019-09767-4
50. Nelson R. R. (1993). National innovation systems: A comparative study. New York: Oxford University Press. https://doi.org/10.1093/oso/9780195076165.001.0001
51. OECD (2003). Business tendency surveys: A handbook. Paris: OECD Publ. https://doi.org/10.1787/9789264177444-en
52. OECD (2012). OECD science, technology and industry outlook 2012. Paris: OECD Publ. https://doi.org/10.1787/sti_outlook-2012-en
53. OECD (2013). Commercialising public research: New trends and strategies. Paris: OECD Publ. https://doi.org/10.1787/9789264193321-en
54. OECD (2015). Frascati Manual 2015: Guidelines for collecting and reporting data on research and experimental development, the measurement of scientific, technological and innovation activities. Paris: OECD Publ. https://doi.org/10.1787/9789264239012-en
55. OECD (2019). University—industry collaboration: New evidence and policy options. Paris: OECD Publ. https://doi.org/10.1787/e9c1e648-en
56. OECD (2023). Science, technology and innovation outlook 2023: Enabling transitions in times of disruption. Paris: OECD Publ. https://doi.org/10.1787/0b55736e-en
57. Priem R. L., Butler J. E. (2001). Is the resource-based “view” a useful perspective for strategic management research? Academy of Management Review, Vol. 26, No. 1, pp. 22—40. https://doi.org/10.5465/amr.2001.4011928
58. Shapira P., Furukawa R. (2003). Evaluating a large-scale research and development program in Japan: Methods, findings and insights. International Journal of Technology Management, Vol. 26, No. 2—4, pp. 166—190. https://doi.org/10.1504/ijtm.2003.003368
59. Stern E. (1993). Ongoing and participative evaluation: Purpose, design and role in the evaluation of a large-scale R&D programme. Research Evaluation, Vol. 3, No. 2, pp. 75—82. https://doi.org/10.1093/rev/3.2.75
60. Teirlinck P., Delanghe H., Padilla P., Verbeek A. (2013). Closing the policy cycle: Increasing the utilization of evaluation findings in research, technological development and innovation policy design. Science and Public Policy, Vol. 40, No. 3, pp. 366—377. https://doi.org/10.1093/scipol/scs123
61. Weiss C. (1999). The interface between evaluation and public policy. Evaluation, Vol. 5, No. 4, pp. 468—486. https://doi.org/10.1177/135638909900500408
Дополнительные файлы
Рецензия
Для цитирования:
Гершман М.А., Гохберг Л.М., Кузнецова Т.Е. Исследование делового климата в российской науке: апробация подхода. Вопросы экономики. 2025;(6):114-126. https://doi.org/10.32609/0042-8736-2025-6-114-136
For citation:
Gershman M.A., Gokhberg L.A., Kuznetsova T.E. Study of the business climate in Russian science: Testing the approach. Voprosy Ekonomiki. 2025;(6):114-126. (In Russ.) https://doi.org/10.32609/0042-8736-2025-6-114-136