

Modern economic theory and stylized facts
https://doi.org/10.32609/0042-8736-2024-7-5-24
Abstract
The article is devoted to the role of stylized facts in the formation and implementation of a research program. The state of modern economic theory is considered from the standpoint of using the generalization method as one of the main methods of scientific knowledge. Three potential sources of weakness in theoretical research have been identified: insufficient attention to stylized facts, a shortage of such facts themselves, and ignoring the possibilities of reducing this deficit. Insufficient attention is illustrated, in particular, by the example of a macroeconomic description of technological renewal of production. Even advanced models of macroeconomic dynamics tend to ignore the existence of a period of simultaneous development of old and new technologies, during which the new ones used are still inferior in their characteristics to the old technologies. In the context of the transition to digital technologies, it becomes especially important to take into account the effects of scale characteristic of these technologies, but they are not taken into account in the new neoclassical synthesis. Modern digital technologies open up prospects for the formation of “quasi-stylized” facts with the help of models capable of simulating long-term experience of economic development in a short time. The peculiarity of stylized facts for different time periods is due to the use of specialized theories for individual stages of economic development.
Keywords
JEL: B41, E10, E17, E20, E27
About the Author
V. E. DementievRussian Federation
Victor E. Dementiev
Moscow
References
1. Aganbegyan A. G. (2023). Innovations in Russia: From possessing the higher knowledge and promising scientific groundwork towards effective socio-economic development. Economic Revival of Russia, No. 2, pp. 13—26. (In Russian). https://doi.org/10.37930/1990-9780-2023-2(76)-13-26
2. Aganbegyan A. G. (2024). Foreign experience in strategizing accelerated socio-economic development and options for its application in Russia. Strategizing: Theory and Practice, Vol. 4, No. 1, pp. 1—26. (In Russian). https://doi.org/10.21603/2782-2435-2024-4-1-1-26
3. Akaev A. A., Hirooka M. (2009). On a mathematical model for long-term forecasting of the dynamics of innovative and economic development. Doklady Akademii Nauk, Vol. 425, No. 6, pp. 727—732. (In Russian).
4. Gimpelson V. E., Kapeliushnikov R. I. (2022). Work routines and risks of automation in the Russian labor market. Voprosy Ekonomiki, No. 8, pp. 68—94. (In Russian). https://doi.org/10.32609/0042-8736-2022-8-68-94
5. Glazyev S. Y. (2010). The strategy of advanced development of Russia in the context of the global crisis. Moscow: Ekonomika. (In Russian).
6. Grigoryev L. M., Pavlyushina V. A. (2018). Inter-country inequality as a dynamic process and the problem of post-industrial development. Voprosy Ekonomiki, No. 7, pp. 5—29. (In Russian). https://doi.org/10.32609/0042-8736-2018-7-5-29
7. avar E. (2015). Crisis of economic science: Causes and remedy. Terra Economicus, Vol. 13, No. 2, pp. 73—83. (In Russian).
8. Dementiev V. E., Evsukov S. G., Ustyuzhanina E. V. (2020). The importance of a strategic approach to pricing in markets for network goods. Journal of the New Economic Association, Vol. 46, No. 2, pp. 57—71. (In Russian). https://doi.org/10.31737/2221-2264-2020-46-2-3
9. Dementiev V. E. (2021). The model of interference of long waves of economic development. Computer Research and Modeling, Vol. 13, No. 3, pp. 649—663. (In Russian). https://doi.org/10.20537/2076-7633-2021-13-3-649-663
10. Kolyuzhnov D. V., Lyahnova M. V. (2022). Small DSGE model of the Russian economy with heterogeneous adaptive learning. World of Economics and Management, Vol. 22, No. 3, pp. 66—87. (In Russian). https://doi.org/10.25205/2542-0429-2022-22-3-66-87
11. Kondratiev N. D. (1993). Selected works. Moscow: Ekonomika. (In Russian).
12. Christensen C. M. (2004). The innovator’s dilemma. When new technologies cause great firms to fail. Moscow: Alpina Business Books. (In Russian).
13. Nikitsky Club (2023). The sad state of world economic science (A series of public discussions “Russia in a global context”, Vol. 125). Moscow: Nikitsky Club. (In Russian).
14. Polbin A. V., Fokin N. D. (2022). DSGE-models with heterogeneous economic agents: A new notion at the characteristics of the functioning of the economy. Voprosy Ekonomiki, No. 9, pp. 53—72. (In Russian). https://doi.org/10.32609/0042-8736-2022-9-53-72
15. Polterovich V. M. (1998). The crisis of economic theory. Economics of Contemporary Russia, No. 1, pp. 46—66. (In Russian).
16. Polterovich V. M. (2011). Toward general social analysis. Social Sciences and Contemporary World, No. 2, pp. 101—111. (In Russian).
17. Polterovich V. М. (2022). On the way to a general theory of socio-economic development: Towards the synthesis of two canons. Issues of Economic Theory, No. 1, pp. 48—57. (In Russian). https://doi.org/10.52342/2587-7666VTE_2022_1_48_57
18. Acemoglu D., Akcigit U., Alp H., Bloom N., Kerr W. (2018). Innovation, reallocation, and growth. American Economic Review, Vol. 108, No. 11, pp. 3450—3491. https://doi.org/10.1257/aer.20130470
19. Acemoglu D., Autor D., Hazell J., Restrepo P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, Vol. 40, No. S1, pp. S293—S340. https://doi.org/10.1086/718327
20. Acemoglu D., Restrepo P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, Vol. 108, No. 6, pp. 1488—1542. https://doi.org/10.1257/aer.20160696
21. Acharya V., Lenzu S., Wang O. (2021). Zombie lending and policy traps. NBER Working Paper, No. 29606. https://doi.org/10.3386/w29606
22. Aghion P., Akcigit U., Howitt P. (2015). The Schumpeterian growth paradigm. Annual Review of Economics, Vol. 7, No. 1, pp. 557—575. https://doi.org/10.1146/annurev-economics-080614-115412
23. Aghion P., Antonin C., Bunel S., Jaravel X. (2020). What are the labor and product market effects of automation? New еvidence from France. CEPR Discussion Paper, No. 14443.
24. Aghion P., Antonin C., Bunel S., Jaravel X. (2023a). The effects of automation on labor demand: A survey of the recent literature. In: L. Yan Ing, G. M. Grossman (eds.). Robots and AI: A new economic era. London and New York: Routledge, pp. 15—39. https://doi.org/10.4324/9781003275534-2
25. Aghion P., Bergeaud A., Boppart T., Klenow P. J., Li H. (2023b). A theory of falling growth and rising rents. The Review of Economic Studies, Vol. 90, No. 6, pp. 2675—2702. https://doi.org/10.1093/restud/rdad016
26. Aghion P., Howitt P. (1992). A model of growth through creative destruction. Econometrica, Vol. 60, No. 2, pp. 323—351. https://doi.org/10.2307/2951599
27. Aghion P., Howitt Р. (2006). Appropriate growth policy: A unifying framework. Journal of the European Economic Association, Vol. 4, No. 2—3, pp. 269—314. https://doi.org/10.1162/jeea.2006.4.2-3.269
28. Akcigit U., Ates S. T. (2021). Ten facts on declining business dynamism and lessons from endogenous growth theory. American Economic Journal: Macroeconomics, Vol. 13, No. 1, pp. 257—298. https://doi.org/10.1257/mac.20180449
29. Arthur W. B. (2015). Complexity and the economy. Oxford: Oxford Economic Press. Arthur W. B. (2021). Foundations of complexity economics. Nature Reviews Physics, Vol. 3, No. 2, pp. 136—145. https://doi.org/10.1038/s42254-020-00273-3
30. Autor D., Salomons A. (2018). Is automation labor-displacing? Productivity growth, employment, and the labor share. NBER Working Paper, No. 24871. https://doi.org/10.3386/w24871
31. Banerjee R., Hofmann B. (2022). Corporate zombies: Аnatomy and life cycle. Economic Policy, Vol. 37, No. 112, pp. 757—803. https://doi.org/10.1093/epolic/eiac027
32. Bertani F., Ponta L., Raberto M., Teglio A., Cincotti S. (2021). The complexity of the intangible digital economy: Аn agent-based model. Journal of Business Research, Vol. 129, pp. 527—540. https://doi.org/10.1016/j.jbusres.2020.03.041
33. Bresnahan T. F., Trajtenberg M. (1995). General purpose technologies ‘Engines of growth’? Journal of Econometrics, Vol. 65, No. 1, pp. 83—108. https://doi.org/10.1016/0304-4076(94)01598-T
34. Brynjolfsson E., Li D., Raymond L. R. (2023). Generative AI at work. NBER Working Paper, No. 31161. https://doi.org/10.3386/w31161
35. Brynjolfsson E., Ng A. (2023). Big AI can centralize decision-making and power, and that’s a problem. In: Missing links in AI governance. Paris; Montréal: UNESCO; Mila — Québec Artificial Intelligence Institute, pp. 65—87.
36. Christiano L. J., Eichenbaum M. S., Trabandt M. (2018). On DSGE models. Journal of Economic Perspectives, Vol. 32, No. 3, pp. 113—140. https://doi.org/10.1257/jep.32.3.113
37. Cincotti S., Raberto M., Teglio A. (2022). Why do we need agent-based macroeconomics? Review of Evolutionary Political Economy, Vol. 3, No. 1, pp. 5—29. https://doi.org/10.1007/s43253-022-00071-w
38. Diamond P. (1965). National debt in a neoclassical growth model. American Economic Review, Vol. 55, No. 5, pp. 1126—1150.
39. Dilaver O., Jump R., Levine P. (2018). Agent-based macroeconomics and dynamic stochastic general equilibrium models: Where do we go from here? Journal of Economic Surveys, Vol. 32, No. 4, pp. 1134—1159. https://doi.org/10.1111/joes.12249
40. Dosi G., Roventini A. (2019). More is different... and complex! The case for agent-based macroeconomics. Journal of Evolutionary Economics, Vol. 29, pp. 1—37. https://doi.org/10.1007/s00191-019-00609-y
41. Easterly W., Levine R. (2001). What have we learned from a decade of empirical research on growth? It’s not factor accumulation: Stylized facts and growth models. World Bank Economic Review, Vol. 15, No. 2, pp. 177—219. https://doi.org/10.1093/wber/15.2.177
42. Eggertsson G. B., Robbins J. A., Wold E. (2021). Kaldor and Piketty’s facts: The rise of monopoly power in the United States. Journal of Monetary Economics, Vol. 124, Supplement, pp. 19—38. https://doi.org/10.1016/j.jmoneco.2021.09.007
43. Fagiolo G., Roventini A. (2017). Macroeconomic рolicy in DSGE and agent-based models redux: New developments and challenges ahead. Journal of Artificial Societies and Social Simulation, Vol. 20, No. 1. https://doi.org/10.18564/jasss.3280
44. Gobbi A., Grazzini J. (2019). A basic New Keynesian DSGE model with dispersed information: An agent-based approach. Journal of Economic Behavior & Organization, Vol. 157, pp. 101—116. https://doi.org/10.1016/j.jebo.2017.12.015
45. Gray E., Grimaud A. (2016). Using the salop circle to study scale effects in Schumpeterian growth models: Why inter-sectoral knowledge diffusion matters. CESifo Working Paper Series, No. 6021.
46. Grossman G. M., Helpman E. (1991). Innovation and growth in the global economy. Cambridge, MA: MIT Press.
47. Guarini G. (2011). Innovation and growth in the Grossman—Helpman’s 1991 model with increasing returns. Economics Bulletin, Vol. 31, No. 1, pp. 147—155.
48. Guzman M., Stiglitz J. E. (2020). Towards a dynamic disequilibrium theory with randomness. Oxford Review of Economic Policy, Vol. 36, No. 3, pp. 621—674. https://doi.org/10.1093/oxrep/graa042
49. Haldane A., Turrell A. (2018). An interdisciplinary model for macroeconomics. Oxford Review of Economic Policy, Vol. 34, No. 1—2, pp. 219—251. https://doi.org/10.1093/oxrep/grx051
50. Helpman E., Trajtenberg M. (1994). A time to sow and a time to reap: Growth based on general purpose technologies. NBER Working Paper, No. 4854. https://doi.org/10.3386/w4854
51. Herrendorf B., Rogerson R., Valentinyi A. (2019). Growth and the Kaldor facts. Federal Reserve Bank of St. Louis Review, Vol. 101, No. 4, pp. 259—276. https://doi.org/10.20955/r.101.259-76
52. Hirooka M. (2006). Innovation dynamism and economic growth. A nonlinear perspective. Cheltenham; Northampton, MA: Edward Elgar. https://doi.org/10.4337/9781845428860
53. Hirschman D. (2016). Stylized facts in the social sciences. Sociological Science, Vol. 3, pp. 604—626. https://doi.org/10.15195/v3.a26
54. Houy C., Fettke P., Loos P. (2015). Stylized facts as an instrument for literature review and cumulative information systems research. Communications of the Association for Information Systems, Vol. 37, No. 1, pp. 225—256. https://doi.org/10.17705/1CAIS.03710
55. Ing L. Y., Grossman G. M. (еds.). (2022). Robots and AI: A new economic era (1st ed.). London: Routledge. https://doi.org/10.4324/9781003275534
56. Ionescu S., Delcea C., Chirita N., Nica I. (2024). Exploring the use of artificial intelligence in agent-based modeling applications: A bibliometric study. Algorithms, Vol. 17, No. 1, article 21. https://doi.org/10.3390/a17010021
57. Jones С. I. (1998). Introduction to economic growth. New York: W.W. Norton. Jones С. I. (2016). The facts of economic growth. In: J. B. Taylor, H. Uhlig (eds.).
58. Handbook of macroeconomics, Vol. 2. Amsterdam: North-Holland, pp. 3—69. https://doi.org/10.1016/bs.hesmac.2016.03.002
59. Jones C. I., Romer P. M. (2010). The new Kaldor facts: Ideas, institutions, population, and human capital. American Economic Journal: Macroeconomics, Vol. 2, No. 1, pp. 224—245. https://doi.org/10.1257/mac.2.1.224
60. Kaldor N. (1961). Capital accumulation and economic growth. In: The theory of capital. New York: MacMillan, рр. 177—222.
61. Lucas R.E. (1993). Making a miracle. Econometrica, Vol. 61, No. 2, pp. 251—272. https://doi.org/10.2307/2951551
62. Makarov V. L., Bakhtizin A. R., Epstein J. M. (2022). Agent-based modeling for a complex world. 2nd ed. Moscow: GAUGN. https://doi.org/10.18254/978-5-604-5843-4-7
63. Meyer M. (2019). How to use and derive stylized facts for validating simulation models. In: C. Beisbart, N. Saam (eds.). Computer simulation validation. Simulation foundations, methods and applications. Cham: Springer, pp. 383—403. https://doi.org/10.1007/978-3-319-70766-2_16
64. Perez C. (2002). Technological revolutions and financial capital: The dynamics of bubbles and golden ages. Cheltenham: Edward Elgar. https://doi.org/10.4337/9781781005323
65. Slobodyan S., Wouters R. (2012). Learning in a medium-scale DSGE model with expectations based on small forecasting models. American Economic Journal: Macroeconomics, Vol. 4, No. 2, pp. 65—101. https://doi.org/10.1257/mac.4.2.65
66. Vermeulen B., Kesselhut J., Pyka A., Saviotti P. P. (2018). The impact of automation on employment: Just the usual structural change? Sustainability, Vol. 10, No. 5, pp. 1—27. https://doi.org/10.3390/su10051661
67. Vivarelli M. (2014). Innovation, employment and skills in advanced and developing countries: A survey of economic literature. Journal of Economic Issues, Vol. 48, No. 1, pp. 123—154. https://doi.org/10.2753/JEI0021-3624480106
68. Zhang W., Valencia A., Chang N.-B. (2023). Synergistic integration between machine learning and agent-based modeling: A multidisciplinary review. IEEE Transactions on Neural Networks and Learning Systems, Vol. 34, No. 5, pp. 2170—2190. https://doi.org/10.1109/TNNLS.2021.3106777
Supplementary files
Review
For citations:
Dementiev V.E. Modern economic theory and stylized facts. Voprosy Ekonomiki. 2024;(7):5-24. (In Russ.) https://doi.org/10.32609/0042-8736-2024-7-5-24