

Pandemic, sanctions and anxiety in Russia’s regions: Business expectations nowcasting
https://doi.org/10.32609/0042-8736-2024-3-96-119
Abstract
The study develops a methodology of business expectations index nowcasting with testing on data for the Russian economy as a whole and its regions. This methodology differs from the existing solutions in that it introduces a Bayesian averaging approach to define a set of search patterns for nowcasting and solves the issue of aggregation of time series by individual queries. The developed indices have shown a high level of adequacy, serving as effective tools to reflect shock events in the country’s economic and political landscape and also as predictors of fluctuations in surveybased expectation indices. The application of the presented methodology has revealed the factors that affect the volatility of business expectations indices depending on the level of development and sectoral specialization of Russian regions. In particular, financial and economic centers of highly developed regions and developed regions with diversified economy show high volatility, while business expectations indices in less developed agrarian and commodity regions show low volatility. These results can be useful for economic policy decisions and are of interest to researchers concerned with economic stability and forecasting.
Keywords
JEL: C32, E17, O11, R11
About the Authors
A. A. FedyuninaRussian Federation
Anna A. Fedyunina
Moscow
M. M. Yurevich
Russian Federation
Maksim A. Yurevich
Moscow
N. A. Gorodny
Russian Federation
Nikolay A. Gorodny
Moscow
References
1. Aivazyan S. A. (2008). The Bayesian approach in econometric analysis. Applied Econometrics, No. 1, pp. 93—130. (In Russian).
2. Aizatullen V. S., Koryagin N. D. (2013). The application of confidence estimates in economics. Statistics and Economics, No. 5, pp. 18—21. (In Russian).
3. Bazarov R. T. (2013). Consumer confidence index: Place and role in the Russian economy. Aktualnye Problemy Gumanitarnykh i Estestvennykh Nauk, No. 101, pp. 151—154. (In Russian).
4. Гавряшина Ю. В., Жердева Е. М. (2015). Развитие малого бизнеса в России в условиях кризиса // Стратегии бизнеса. № 11. С. 3—10.Gavryashina Y. V., Zherdeva E. M. (2015). Development of small business in Russia in crisis situations. Business Strategies, No. 11, pp. 3—10. (In Russian).
5. Grigoryev L. M., Urozhaeva Y. V., Ivanov D. S. (2011). Synthetic classification of regions: The basis for regional policy. In: L. M. Grigoryev, N. V. Zubarevich, G. R. Khasaev (eds.). Russian regions: Economic crisis and the problems of modernization. Moscow: Teis, pp. 34—53. (In Russian).
6. Ermashkevich N. S. (2019). Comprehensive analysis of government measures to support small and mediumsized businesses in Russia. Rossiyskoe Predprinimatelstvo, Vol. 20, No. 1, pp. 13—38. (In Russian). http://doi.org10.18334/rp.20.1.39727
7. Zavyalov D. V., Saginova O. V., Zavyalova N. B. (2017). Challenges of small and mediumsized entrepreneurship development in Russia. Rossiyskoe Predprinimatelstvo, Vol. 18, No. 3, pp. 203—214. (In Russian). http://doi.org10.18334/rp.18.3.37285
8. Levchenko K. N. (2021). State support for small business during the COVID19 pandemic in Russia. Innovation Science, No. 102, pp. 50—56. (In Russian).
9. Petrova D. A., Trunin P. V. (2020). Detection of economic agents’ sentiments based on search queries. Applied Econometrics, Vol. 3, No. 59, pp. 71—87. (In Russian). http://doi.org10.22394/199376012020597187
10. Porshakov A., Deryugina E., Ponomarenko A., Sinyakov A. (2015). Nowcasting and shortterm forecasting of Russian GDP with a dynamic factor model. Bank of Russia Working Papers, No. 2. (In Russian).
11. Smirnova A. A. (2021). Measures of state support for small businesses during the COVID19 pandemic in Russia. Ekonomika, Predprinimatelstvo i Pravo, Vol. 11, No. 2, pp. 285—298. (In Russian). http://doi.org10.18334/epp.11.2.111588
12. Stolbov M. I. (2011). Statistics of search queries in Google as an indicator of financial conditions. Voprosy Ekonomiki, No. 11, pp. 79—93. (In Russian). https://doi.org/10.32609/004287362011117993
13. Stolbov M. I., Shchepeleva M. A., Karminsky A. M. (2021). Construction of a global financial stress index based on a synthesis of central bank research and Google search intensity. Moscow: Priority 2030; MGIMO University. (In Russian).
14. Ulyankin F. (2020). Forecasting Russian macroeconomic indicators based on information from news and search queries. Russian Journal of Money and Credit, Vol. 79, No. 4, pp. 75—97. https://doi.org/10.31477/rjmf.202004.75
15. Fantazzini D., Shakleina M. V., Yuras I. A. (2018). Big Data for computing social wellbeing indices of the Russian population. Applied Econometrics, Vol. 50, No. 2, pp. 43—66. (In Russian).
16. Tsapenko I. P., Yurevich M. A. (2022). Nowcasting migration using statistics of online queries. Economic and Social Changes: Facts, Trends, Forecast, Vol. 15, No. 1, pp. 74—89. https://doi.org/10.15838/esc.2022.1.79.4
17. Yurevich M. A. (2021). Inflation expectations and inflation: Nowcasting and forecasting. Journal of Economic Regulation, Vol. 12, No. 2, pp. 22—35. (In Russian). https://doi.org/10.17835/20785429.2021.12.2.022035
18. Shulyak E. (2022). Macroeconomic forecasting using data from social media. Russian Journal of Money and Finance, Vol. 81, No. 4, pp. 86—112.
19. Algan Y., Beasley E., Guyot F., Higa K., Murtin F., Senik C. (2016). Big Data measures of wellbeing: Evidence from a Google wellbeing index in the United States. OECD Statistics Working Papers, No. 2016/03. https://doi.org/10.1787/5jlz9hpg0rd1en
20. Antenucci D., Cafarella M., Levenstein M., Ré C., Shapiro M. D. (2014). Using social media to measure labor market flows. NBER Working Paper, No. w20010. https://doi.org/10.3386/w20010
21. Askitas N., Zimmermann K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, Vol. 55, No. 2, pp. 107—120. https://doi.org/10.3790/aeq.55.2.107
22. Atkins A., Niranjan M., Gerding E. (2018). Financial news predicts stock market volatility better than close price. Journal of Finance and Data Science, Vol. 4, No. 2, pp. 120—137. https://doi.org/10.1016/j.jfds.2018.02.002
23. Baker S. R., Fradkin A. (2017). The impact of unemployment insurance on job search: Evidence from Google search data. Review of Economics and Statistics, Vol. 99, No. 5, pp. 756—768. https://doi.org/10.1162/REST_a_00674
24. Baker S. R., Bloom N., Davis S. J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, Vol. 131, No. 4, pp. 1593—1636. https://doi.org/10.1093/qje/qjw024
25. BangwayoSkeete P. F., Skeete R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixeddata sampling approach. Tourism Management, Vol. 46, pp. 454—464. https://doi.org/10.1016/j.tourman.2014.07.014
26. Beck K. (2019). What drives business cycle synchronization? BMA results from the European Union. Baltic Journal of Economics, Vol. 19, No. 2, pp. 248—275. https://doi.org/10.1080/1406099X.2019.1652393
27. Beck K., Możdżeń M. (2020). Institutional determinants of budgetary expenditures. A BMAbased reevaluation of contemporary theories for OECD countries. Sustainability, Vol. 12, No. 10, article 4104. https://doi.org/10.3390su12104104
28. Bergström R. (1995). The relationship between manufacturing production and different business survey series in Sweden 1968—1992. International Journal of Forecasting, Vol. 11, No. 3, pp. 379—393. https://doi.org/10.1016/01692070 (95)006017
29. Bilgin M. H., Demir E., Gozgor G., Karabulut G., Kaya H. (2019). A novel index of macroeconomic uncertainty for Turkey based on GoogleTrends. Economics Letters, Vol. 184, article 108601. https://doi.org/10.1016/j.econlet.2019.108601
30. Bontempi M. E., Frigeri M., Golinelli R., Squadrani M. (2021). EURQ: A new web searchbased uncertainty index. Economica, Vol. 88, No. 352, pp. 969—1015. https://doi.org/10.1111/ecca.12372
31. Bruno G., Otranto E. (2008). Models to date the business cycle: The Italian case. Economic Modelling, Vol. 25, No. 5, pp. 899—911. https://doi.org/10.1016/j.econmod.2007.11.009
32. Castelnuovo E., Tran T. D. (2017). Google it up! A Google Trendsbased uncertainty index for the United States and Australia. Economics Letters, Vol. 161, pp. 149—153. https://doi.org/10.1016/j.econlet.2017.09.032
33. Cesaroni T., Iezzi S. (2017). The predictive content of business survey indicators: Evidence from SIGE. Journal of Business Cycle Research, Vol. 13, pp. 75—104. https://doi.org/10.1007/s4154901700158
34. Chatziantoniou I., Degiannakis S., Eeckels B., Filis G. (2016). Forecasting tourist arrivals using origin country macroeconomics. Applied Economics, Vol. 48, No. 27, pp. 2571—2585. https://doi.org/10.1080/00036846.2015.1125434
35. Chen M. H. (2015). Understanding the impact of changes in consumer confidence on hotel stock performance in Taiwan. International Journal of Hospitality Management, Vol. 50, pp. 55—65. https://doi.org/10.1016/j.ijhm.2015.07.010
36. Chernis T., Sekkel R. (2018). Nowcasting Canadian economic activity in an uncertain environment. Bank of Canada Staff Discussion Paper, No. 20189.
37. Choi H., Varian H. (2012). Predicting the present with Google Trends. Economic Record, Vol. 88, pp. 2—9. https://doi.org/10.1111/j.14754932.2012.00809.x
38. Claveria O., Pons E., Ramos R. (2007). Business and consumer expectations and macroeconomic forecasts. International Journal of Forecasting, Vol. 23, No. 1, pp. 47—69. https://doi.org/10.1016/j.ijforecast.2006.04.004
39. Conti A. M., Rondinelli C. (2015). Easier said than done: The divergence between soft and hard data. Economic Research and International Relations Area, No. 258. Bank of Italy.
40. Curme C., Preis T., Stanley H. E., Moat H. S. (2014). Quantifying the semantics of search behavior before stock market moves. Proceedings of the National Academy of Sciences, Vol. 111, No. 32, pp. 11600—11605. https://doi.org/10.1073/pnas.1324054111
41. de Mendonça H. F., de Oliveira D. S. (2019). Firms’ confidence and Okun’s law in OECD countries. Economic Modelling, Vol. 78, pp. 98—107. https://doi.org/10.1016/j.econmod.2018.08.015
42. Dominitz J., Manski C. F. (2004). How should we measure consumer confidence? Journal of Economic Perspectives, Vol. 18, No. 2, pp. 51—66. https://doi.org/10.1257/0895330041371303
43. Donadelli M. (2015). Google searchbased metrics, policyrelated uncertainty and macro economic conditions. Applied Economics Letters, Vol. 22, No. 10, pp. 801—807. https://doi.org/10.1080/13504851.2014.978070
44. Donadelli M., Gerotto L. (2019). Nonmacrobased Google searches, uncertainty, and real economic activity. Research in International Business and Finance, Vol. 48, pp. 111—142. https://doi.org/10.1016/j.ribaf.2018.12.007
45. Dong X., Bollen J. (2015). Computational models of consumer confidence from largescale online attention data: Crowdsourcing econometrics. PloS ONE, Vol. 10, No. 3, article e0120039. https://doi.org/10.1371/journal.pone.0120039
46. Dzielinski M. (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters, Vol. 9, No. 3, pp. 167—175. https://doi.org/10.1016/j.frl.2011.10.003
47. Ferrara L., Simoni A. (2023). When are Google data useful to nowcast GDP? An approach via preselection and shrinkage. Journal of Business & Economic Statistics, Vol. 41, No. 4, pp. 1188—1202. https://doi.org/10.1080/07350015.2022.2116025
48. Fisher K. L., Statman M. (2003). Consumer confidence and stock returns. Journal of Portfolio Management, Vol. 30, No. 1, pp. 115—127. https://doi.org/10.3905/jpm.2003.319925
49. Fondeur Y., Karamé F. (2013). Can Google data help predict French youth unemployment? Economic Modelling, Vol. 30, pp. 117—125. https://doi.org/10.1016/j.econmod.2012.07.017
50. GarciaLópez M. À., JofreMonseny J., MartínezMazza R., Segú M. (2020). Do shortterm rental platforms affect housing markets? Evidence from Airbnb in Barcelona. Journal of Urban Economics, Vol. 119, article 103278. https://doi.org/10.1016/j.jue.2020.103278
51. Gerasimenko V. V., Golovanova E. (2021). Evaluation of consumer behaviour on the Internet under the conditions of pandemic shock based on search activity in the luxury segment. Population and Economics, Vol. 5, No. 2, pp. 16—28. https://doi.org/10.3897/popecon.5.e63315
52. Goel S., Hofman J. M., Lahaie S., Pennock D. M., Watts D. J. (2010). Predicting consumer behavior with Web search. Proceedings of the National Academy of Sciences, Vol. 107, No. 41, pp. 17486—17490. https://doi.org/10.1073/ pnas.1005962107
53. GonzálezAguado C., MoralBenito E. (2013). Determinants of corporate default: A BMA approach. Applied Economics Letters, Vol. 20, No. 6, pp. 511—514. https://doi.org/10.1080/13504851.2012.718051
54. Guizzardi A., Stacchini A. (2015). Realtime forecasting regional tourism with business sentiment surveys. Tourism Management, Vol. 47, pp. 213—223. https://doi.org/10.1016/j.tourman.2014.09.022
55. Guzman G. (2011). Internet search behavior as an economic forecasting tool: The case of inflation expectations. Journal of Economic and Social Measurement, Vol. 36, No. 3, pp. 119—167. https://doi.org/10.3233/JEM20110342
56. Hampson D. P., Ma S., Wang Y., Han M. S. (2021). Consumer confidence and conspicuous consumption: A conservation of resources perspective. International Journal of Consumer Studies, Vol. 45, No. 6, pp. 1392—1409. https://doi.org/10.1111/ijcs.12661
57. Hunneman A., Verhoef P. C., Sloot L. M. (2015). The impact of consumer confidence on store satisfaction and share of wallet formation. Journal of Retailing, Vol. 91, No. 3, pp. 516—532. https://doi.org/10.1016/j.jretai.2015.02.004
58. Jansen W. J., Nahuis N. J. (2003). The stock market and consumer confidence: European evidence. Economics Letters, Vol. 79, No. 1, pp. 89—98. https://doi.org/10.1016/S01651765(02)002926
59. Keane M., Neal T. (2021). Consumer panic in the COVID19 pandemic. Journal of Econometrics, Vol. 220, No. 1, pp. 86—105. https://doi.org/10.1016/j.jeconom.2020.07.045
60. Khan H., Upadhayaya S. (2020). Does business confidence matter for investment? Empirical Economics, Vol. 59, pp. 1633—1665. https://doi.org/10.1007/s00181019016945
61. Kupfer A., Zorn J. (2020). A languageindependent measurement of economic policy uncertainty in eastern European countries. Emerging Markets Finance and Trade, Vol. 56, No. 5, pp. 1166—1180. https://doi.org/10.1080/1540496X.2018.1559140
62. Lehmann R. (2023). The forecasting power of the ifo business survey. Journal of Business Cycle Research, Vol. 19, No. 1, pp. 43—94. https://doi.org/10.1007/s41549022000795
63. Lehmann R., Reif M. (2020). Tracking and predicting the German economy: Ifo vs. PMI. CESifo Working Paper, No. 8145. https://doi.org/10.2139/ssrn.3552385
64. Malgarini M. (2012). Industrial production and confidence after the crisis: What’s going on? MPRA Рaper, No. 53813.
65. Mazurek J., Mielcová E. (2017). Is consumer confidence index a suitable predictor of future economic growth? An evidence from the USA. Economics and Management, Vol. 20, No. 2, pp. 30—45. https://doi.org/10.15240/tul/001/20172003
66. Nikolopoulos K., Punia S., Schäfers A., Tsinopoulos C., Vasilakis C. (2021). Forecasting and planning during a pandemic: COVID19 growth rates, supply chain disruptions, and governmental decisions. European Journal of Operational Research, Vol. 290, No. 1, pp. 99—115. https://doi.org/10.1016/j.ejor.2020.08.001
67. Olkiewicz M. (2022). The impact of economic indicators on the evolution of business confidence during the COVID19 pandemic period. Sustainability, Vol. 14, No. 9, pp. 1—17. https://doi.org/10.3390/su14095073
68. Ou Y. C., de Vries L., Wiesel T., Verhoef P. C. (2014). The role of consumer confidence in creating customer loyalty. Journal of Service Research, Vol. 17, No. 3, pp. 339—354. https://doi.org/10.1177/1094670513513925
69. Pagano M., Wagner C., Zechner J. (2020). Disaster resilience and asset prices. Unpublished manuscript. Available at: https://doi.org/10.48550/arXiv.2005.08929
70. Patel J. C., Khurana P., Sharma Y. K., Kumar B., Ragumani S. (2018). Chronic lifestyle diseases display seasonal sensitive comorbid trend in human population evidence from Google Trends. PLoS ONE, Vol. 13, No. 12, article e0207359. https://doi.org/10.1371/journal.pone.0207359
71. Petrova D., Trunin P. (2020). Population forecasting and analysis of demographic heterogeneity of Russia. Available at SSRN: https://doi.org/10.2139/ssrn.3594521
72. Pramana S., Paramartha D. Y., Ermawan G. Y., Deli N. F., Srimulyani W. (2022). Impact of COVID19 pandemic on tourism in Indonesia. Current Issues in Tourism, Vol. 25, No. 15, pp. 2422—2442. https://doi.org/10.1080/13683500.2021.1968803
73. Preis T., Moat H. S., Stanley H. E., Bishop S. R. (2012). Quantifying the advantage of looking forward. Scientific Reports, Vol. 2, No. 1, pp. 1—2. https://doi.org/10.1038/srep00350
74. Preis T., Moat H. S., Stanley H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, Vol. 3, No. 1, pp. 1—6. https://doi.org/10.1038/srep01684
75. Raftery A. E. (1995). Bayesian model selection in social research. Sociological Methodology, Vol. 25, pp. 111—163. https://doi.org/10.2307/271063
76. Salisu A. A., Ogbonna A. E., Oloko T. F., Adediran I. A. (2021). A new index for measuring uncertainty due to the COVID19 pandemic. Sustainability, Vol. 13, No. 6, article 3212. https://doi.org/10.3390/su13063212
77. Sax C., Eddelbuettel D. (2018). Seasonal adjustment by X13ARIMASEATS in R. Journal of Statistical Software, Vol. 87, No. 11, pp. 1—17. https://doi.org/10.18637/jss.v087.i11
78. Shayaa S., AlGaradi M. A., Piprani A. Z., Ashraf M., Sulaiman A. (2017). Social media sentiment analysis of consumer purchasing behavior vs consumer confidence index. In: Proceedings of the International Conference on Big Data and Internet of Things (BDIOT’17). New York: Association for Computing Machinery, pp. 32—35. https://doi.org/10.1145/3175684.3175712
79. Sun S., Wei Y., Tsui K. L., Wang S. (2019). Forecasting tourist arrivals with machine learning and internet search index. Tourism Management, Vol. 70, pp. 1—10. https://doi.org/10.1016/j.tourman.2018.07.010
80. Szczygielski J. J., Bwanya P. R., Charteris A., Brzeszczyński J. (2021). The only certainty is uncertainty: An analysis of the impact of COVID19 uncertainty on regional stock markets. Finance Research Letters, Vol. 43, article 101945. https://doi.org/10.1016/j.frl.2021.101945
81. Szczygielski J. J., Charteris A., Obojska L. (2023). Do commodity markets catch a cold from stock markets? Modelling uncertainty spillovers using Google search trends and wavelet coherence. International Review of Financial Analysis, Vol. 87, article 102304. https://doi.org/10.1016/j.irfa.2022.102304
82. Taylor K., McNabb R. (2007). Business cycles and the role of confidence: Еvidence for Europe. Oxford Bulletin of Economics and Statistics, Vol. 69, No. 2, pp. 185—208. https://doi.org/10.1111/j.14680084.2007.00472.x
83. Tran T. D., Vehbi T., Wong B. (2019). Measuring uncertainty for New Zealand using datarich approach. Australian Economic Review, Vol. 52, No. 3, pp. 344—352. https://doi.org/10.1111/14678462.12339
84. Vosen S., Schmidt T. (2011). Forecasting private consumption: Surveybased indicators vs. Google Trends. Journal of Forecasting, Vol. 30, No. 6, pp. 565—578. https://doi.org/10.1002/for.1213
85. Wang L., Wang S., Yuan Z., Peng L. (2021). Analyzing potential tourist behavior using PCA and modified affinity propagation clustering based on Baidu index: Taking Beijing city as an example. Data Science and Management, Vol. 2, pp. 12—19. https://doi.org/10.1016/j.dsm.2021.05.001
86. Woloszko N. (2021). Tracking GDP using Google Trends and machine learning: A new OECD model. VoxEU, December 19. https://cepr.org/voxeu/columns/trackinggdpusinggoogletrendsandmachinelearningnewoecdmodel
87. Zhang C., Tian Y. X., Fan Z. P. (2022). Forecasting sales using online review and search engine data: A method based on PCA—DSFOA—BPN N. International Journal of Forecasting, Vol. 38, No. 3, pp. 1005—1024. https://doi.org/10.1016/j.ijforecast.2021.07.010
88. Zou H., Xue L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, Vol. 106, No. 8, pp. 1311—1320. https://doi.org/10.1109/jPROC.2018.2846588
Supplementary files
Review
For citations:
Fedyunina A.A., Yurevich M.M., Gorodny N.A. Pandemic, sanctions and anxiety in Russia’s regions: Business expectations nowcasting. Voprosy Ekonomiki. 2024;(3):96-119. (In Russ.) https://doi.org/10.32609/0042-8736-2024-3-96-119