Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nowcasting Russia’s key macroeconomic variables using machine learning

https://doi.org/10.32609/0042-8736-2022-8-133-157

Abstract

The article developed a methodology for nowcasting and short-term forecasting key Russian macroeconomic aggregates: real GDP, consumption, investment, export, import, using machine learning methods: boosting, elastic net, and random forest. The set of predictors included indicators of the stock market, money market, surveys, world prices for resources, price indices, and other statistical indicators of different frequency, from daily to quarterly. Our approach makes available a detailed examination of the changes in forecasts with the flow of new information. For most of the considered variables, a monotonic non-deterioration of the forecast quality was obtained with an expansion of available information. Furthermore, machine learning methods have shown significant superiority in predictive performance over naive prediction. The considered methods within the framework of the pseudo-experiment quickly showed a strong drop in real GDP, household consumption, and other variables in the context of the spread of the COVID-19 pandemic in the 2nd and 3rd quarters of 2020.

About the Authors

M. Y. Gareev
Russian Presidential Academy of National Economy and Public Administration
Russian Federation

Mikhail Y. Gareev

Moscow

 



A. V. Polbin
Russian Presidential Academy of National Economy and Public Administration; Gaidar Institute for Economic Policy
Russian Federation

Andrey V. Polbin

Moscow



References

1. Gareev M. Y. (2020). Use of machine learning methods to forecast investment in Russia. Russian Journal of Money and Finance, Vol. 79, No. 1, pp. 35—56. (In Russian). https://doi.org/10.31477/rjmf.202001.35

2. Demeshev B. B., Malakhovskaya O. A. (2016). Macroeconomic forecasting with a Litterman’s BVAR model. HSE Economic Journal, Vol. 20, No. 4, pp. 691—710. (In Russian).

3. Pestova A. A., Mamonov M. E. (2016). Estimating the influence of different shocks on macroeconomic indicators and developing conditional forecasts on the basis of BVAR model for the Russian economy. Ekonomicheskaya Politika, Vol. 11, No. 4, pp. 56—92. (In Russian). https://doi.org/10.18288/1994-51242016-4-03

4. Porshakov A. S., Ponomarenko A. A., Sinyakov A. S. (2016). Nowcasting and short-term forecasting of Russian GDP with a dynamic factor model. Journal of the New Economic Association, Vol. 30, No. 2, pp. 60—76. (In Russian). https://doi.org/10.31737/2221-2264-2016-30-2-3

5. Fokin N. D., Polbin A. V. (2019). Forecasting Russia’s key macroeconomic indicators with the VAR-LASSO model. Russian Journal of Money and Finance, Vol. 78, No. 2, pp. 67—93. (In Russian). https://doi.org/10.31477/rjmf.201902.67

6. Altman N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, Vol. 46, No. 3, pp. 175—185. https:// doi.org/10.1080/00031305.1992.10475879

7. Andreou E., Ghysels E., Kourtellos A. (2013). Should macroeconomic forecasters use daily financial data and how? Journal of Business & Economic Statistics, Vol. 31, No. 2, pp. 240—251. https://doi.org/10.1080/07350015.2013.767199

8. Babii A., Ghysels E., Striaukas J. (2021). Machine learning time series regressions with an application to nowcasting. Journal of Business & Economic Statistics, Vol. 40, No. 3, pp. 1094—1106. https://doi.org/10.1080/07350015.2021.1899933

9. Baffigi A., Golinelli R., Parigi G. (2004). Bridge models to forecast the euro area GDP. International Journal of Forecasting, Vol. 20, No. 3, pp. 447—460. https://doi.org/10.1016/S0169-2070(03)00067-0

10. Bańbura M., Giannone D., Modugno M., Reichlin L. (2013). Now-casting and the realtime data flow. In: G. Elliott (ed.). Handbook of economic forecasting, Vol. 2. Elsevier, pp. 195—237. https://doi.org/10.1016/B978-0-444-53683-9.00004-9

11. Boser B. E., Guyon I. M., Vapnik V. N. (1992). A training algorithm for optimal margin classifiers. In: COLT’92: Proceedings of the Fifth annual workshop on computational learning theory. New York: Association for Computing Machinery, pp. 144—152. https://doi.org/10.1145/130385.130401

12. Brave S. A., Butters R. A., Justiniano A. (2019). Forecasting economic activity with mixed frequency BVARs. International Journal of Forecasting, Vol. 35, No. 4, pp. 1692—1707. https://doi.org/10.1016/j.ijforecast.2019.02.010

13. Breiman L. (1994). Bagging predictors. Machine Learning, Vol. 24, No. 2, pp. 123—140. https://doi.org/10.1007/BF00058655

14. Breiman L. (2001). Random forests. Machine Learning, Vol. 45, No. 1, pp. 5—32. https://doi.org/10.1023/A:1010933404324

15. Clements M. P., Galvão A. B. (2009). Forecasting US output growth using leading indicators: An appraisal using MIDAS models. Journal of Applied Econometrics, Vol. 24, No. 7, pp. 1187—1206. https://doi.org/10.1002/jae.1075

16. Diebold F. X., Mariano R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, Vol. 13, No. 3, pp. 253—263. https://doi.org/10.1198/073500102753410444

17. Diron M. (2008). Short-term forecasts of euro area real GDP growth: An assessment of real-time performance based on vintage data. Journal of Forecasting, Vol. 27, No. 5, pp. 371—390. https://doi.org/10.1002/for.1067

18. Doz C., Giannone D., Reichlin L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. Journal of Econometrics, Vol. 164, No. 1, pp. 188—205. https://doi.org/10.1016/j.jeconom.2011.02.012

19. Doz C., Giannone D., Reichlin L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. Review of Economics and Statistics, Vol. 94, No. 4, pp. 1014—1024. https://doi.org/10.1162/REST_a_00225

20. Foroni C., Marcellino M. (2014). A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates. International Journal of Forecasting, Vol. 30, No. 3, pp. 554—568. https://doi.org/10.1016/j.ijforecast.2013.01.010

21. Friedman J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, Vol. 29, No. 5, pp. 1189—1232. https://doi.org/10.1214/aos/1013203451

22. Giannone D., Reichlin L., Small D. (2008). Nowcasting: The real-time informational content of macroeconomic data. Journal of Monetary Economics, Vol. 55, No. 4, pp. 665—676. https://doi.org/10.1016/j.jmoneco.2008.05.010

23. Golinelli R., Parigi G. (2007). The use of monthly indicators to forecast quarterly GDP in the short run: An application to the G7 countries. Journal of Forecasting, Vol. 26, No. 2, pp. 77—94. https://doi.org/10.1002/for.1007

24. Harvey D., Leybourne S., Newbold P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting, Vol. 13, No. 2, pp. 281—291. https://doi.org/10.1016/S0169-2070(96)00719-4

25. Huber F., Koop G., Onorante L., Pfarrhofer M., Schreiner J. (2020). Nowcasting in a pandemic using non-parametric mixed frequency VARs. Journal of Econometrics, [forthcoming]. https://doi.org/10.1016/j.jeconom.2020.11.006

26. Kuzin V., Marcellino M., Schumacher C. (2011). MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area. International Journal of Forecasting, Vol. 27, No. 2, pp. 529—542. https://doi.org/10.1016/j.ijforecast.2010.02.006

27. Mikosch H., Solanko L. (2019). Forecasting quarterly Russian GDP growth with mixed frequency data. Russian Journal of Money and Finance, Vol. 78, No. 1, pp. 19—35. https://doi.org/10.31477/rjmf.201901.19

28. Patton A. J., Timmermann A. (2012). Forecast rationality tests based on multi-horizon bounds. Journal of Business & Economic Statistics, Vol. 30, No. 1, pp. 1—17. https://doi.org/10.1080/07350015.2012.634337

29. Schorfheide F., Song D. (2015). Real-time forecasting with a mixed-frequency VAR. Journal of Business & Economic Statistics, Vol. 33, No. 3, pp. 366—380. https://doi.org/10.1080/07350015.2014.954707

30. Zhemkov M. (2021). Nowcasting Russian GDP using forecast combination approach. International Economics, Vol. 168, pp. 10—24. https://doi.org/10.1016/j.inteco.2021.07.006

31. Zou H., Hastie T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 67, No. 2, pp. 301—320. https://doi.org/10.1111/j.1467-9868.2005.00503.x


Review

For citations:


Gareev M.Y., Polbin A.V. Nowcasting Russia’s key macroeconomic variables using machine learning. Voprosy Ekonomiki. 2022;(8):133—157. (In Russ.) https://doi.org/10.32609/0042-8736-2022-8-133-157

Views: 1226


ISSN 0042-8736 (Print)