

Факторы ценообразования розничных кредитов в России
https://doi.org/10.32609/0042-8736-2023-6-36-61
Аннотация
Впервые рассмотрен уникальный массив данных о предложении ставок по кредитам с февраля по август 2022 г. Обосновано, что такие предложения, содержащие информацию о ставке и дополнительных условиях (срок, сумма и т. д.), чаще дают более крупные банки. Проанализированы слагаемые как кредитного риска ссуды, так и риск-аппетита банка. Показано, что банки, оценивающие кредитный риск для нормативов по собственным данным и моделям (ПВР-банки), дают более консервативные оценки кредитного риска.
Об авторе
Г. И. ПеникасРоссия
Пеникас Генрих Иозович, кандидат экономических наук, руководитель проектов Департамента исследований и прогнозирования
Москва
Список литературы
1. Банк России (2011). Консультативный документ о перспективах применения российскими банками IRB-подхода Компонента I Базеля II в надзорных целях и необходимых для этого мероприятиях (действиях).
2. Банк России (2020). Об определении системно значимых кредитных организаций и подходов к их регулированию. Доклад для общественных консультаций.
3. Банк России (2021). О переводе системно значимых кредитных организаций на подход к оценке кредитных рисков на основе внутренних рейтингов. Доклад для общественных консультаций.
4. Ершов Э. Б. (2008). Конкурирующие регрессии: критерии и процедуры отбора // Экономический журнал ВШЭ. № 4. С. 488—511.
5. Пеникас Г. И. (2021). Премия за неявное страхование вкладов в российских государственных банках // Вопросы экономики. № 10. С. 89—112.
6. Пеникас Г. И. (2022). Эффект переноса ключевой ставки Банка России на ставки по вкладам в период 2020—2022 гг. // Деньги и кредит. Т. 81, № 2. С. 20—48.
7. Adam A. (2007). Handbook of asset and liability management: From models to optimal return strategies. Chichester: John Wiley & Sons.
8. Altman E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, Vol. 23, No. 4, рр. 589—609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
9. Altman E. (2018). A fifty-year retrospective on credit risk models, the Altman Z-score family of models and their applications to financial markets and managerial strategies. Journal of Credit Risk, IRMC 10th Anniversary Special Issue, рр. 1—34. https://doi.org/10.21314/JCR.2018.243
10. Amos H. (2012). New rules revolutionize banking sector. Moscow Times, August 1. https://www.themoscowtimes.com/2012/08/01/new-rules-revolutionize-banking-sector-a16715
11. BCBS (2005). An explanatory note on the Basel II IRB risk weight functions. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
12. BCBS (2006). International convergence of capital measurement and capital standards. A revised framework. Comprehensive version. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
13. BCBS (2013). Regulatory Consistency Assessment Programme (RCAP): Analysis of risk-weighted assets for credit risk in the banking book. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
14. BCBS (2016). Reducing variation in credit risk-weighted assets — constraints on the use of internal model approaches. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
15. BCBS (2017). Basel III: Finalising post-crisis reforms. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
16. BCBS (2022). Newsletter on COVID-19 related credit risk issues. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
17. Behn M., Haselmann R., Vig V. (2016). The limits of model-based regulation. ECB Working Paper, No. 1928. https://doi.org/10.2139/ssrn.2804598
18. Clayton D. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrica, Vol. 65, No. 1, pp. 141—151. https://doi.org/10.1093/biomet/65.1.141
19. Dermine J. (1986). Deposit rates, credit rates and bank capital: The Klein—Monti model revisited. Journal of Banking and Finance, Vol. 10, No. 1, pp. 99—114. https://doi.org/10.1016/0378-4266(86)90022-1
20. Dermine J. (2003). ALM in banking. Available at SSRN: https://doi.org/10.2139/ssrn.470001
21. Diebolt F. X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebolt—Mariano tests. Journal of Business & Economic Statistics, Vol. 33, No. 1, pp. 1—9. https://doi.org/10.1080/07350015.2014.983236
22. EBA (2021). EBA releases its annual assessment of the consistency of internal model outcomes for 2020. March 15. https://www.eba.europa.eu/eba-releases-its-annual-assessment-consistency-internal-model-outcomes-2020
23. Eckert F., Mikosch H., Stotz M. (2020). The corona crisis and corporate bankruptcies: Evidence from Switzerland. VoxEU, August 31. https://cepr.org/voxeu/columns/corona-crisis-and-corporate-bankruptcies-evidence-switzerland
24. Gordy M. (2000). A comparative anatomy of credit risk models. Journal of Banking and Finance, Vol. 24, No. 1—2, pp. 119—149. https://doi.org/10.1016/S0378-4266(99)00054-0
25. Gordy M. (2003). A risk-factor model foundation for ratings-based bank capital rules. Journal of Financial Intermediation, Vol. 12, No. 3, pp. 199—232. https://doi.org/10.1016/S1042-9573(03)00040-8
26. Gordy M. (2004). Granularity adjustment in portfolio credit risk measurement. In: Szegö (ed.). Risk measures for the 21st century. Chichester: John Wiley & Sons, pp. 109—121.
27. Gordy M., Howells B. (2006). Procyclicality in Basel II: Can we treat the disease without killing the patient? Journal of Financial Intermediation, Vol. 15, No. 3, pp. 395—417. https://doi.org/10.1016/j.jfi.2005.12.002
28. Gordy M., Lütkebohmert E. (2013). Granularity adjustment for regulatory capital assessment. International Journal of Central Banking, Vol. 9, No. 3, pp. 33—70.
29. Grant J. (2011). Liquidity transfer pricing: A guide to better practice. Financial Stability Institute Occasional Paper, No. 10.
30. Grishina T., Ponomarenko A. (2021). Banks’ interest rate setting and transitions between liquidity surplus and deficit. Bank of Russia Working Paper, No. 79.
31. Gumbel E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, Vol. 55, No. 292, pp. 698—707. https://doi.org/10.1080/01621459.1960.10483368
32. Haque S. M., Varghese R. (2021). The COVID-19 impact on corporate leverage and financial fragility. IMF Working Paper, No. 265. https://doi.org/10.5089/9781589064126.001
33. Hasebe T. (2013). Copula-based maximum-likelihood estimation of sample-selection models. Stata Journal, Vol. 13, No. 3, pp. 547—573. https://doi.org/10.1177/1536867X1301300307
34. Heckman J., Lochner L., Todd P. (2006). Earnings functions, rates of return and treatment effects: Тhe Mincer equation and beyond. In: E. A. Hanushek, F. Welch. Handbook of the economics of education, Vol. 1. Amsterdam: North Holland, pp. 307—458.
35. Hernández de Cos P. (2021). Evaluating the effectiveness of Basel III during COVID-19 and beyond. Keynote address at the BCBS-Bundesbank-CEPR workshop on evaluating financial regulation 20 April. https://www.bis.org/speeches/sp210420.pdf
36. Horny G., Manganelli S., Mojon B. (2018). Measuring financial fragmentation in the euro area corporate bond market. Journal of Risk and Financial Management, Vol. 74, No. 11, pp. 1—19. https://doi.org/10.3390/jrfm11040074
37. Jahn N., Memmel C., Pfingsten A. (2013). Banks’ concentration versus diversification in the loan portfolio: New evidence from Germany. Deutsche Bundesbank Discussion Paper, No. 53/2013: https://doi.org/10.2139/ssrn.2796948
38. Karas A., Vernikov A. (2019). Russian bank data: Birth and death, location, acquisitions, deposit insurance participation, state and foreign ownership. Data in Brief, Vol. 27, article 104560. https://doi.org/10.1016/j.dib.2019.104560
39. Klein M. A. (1971). A theory of the banking firm. Journal of Money, Credit and Banking, Vol. 3, No. 2, pp. 205—218. https://doi.org/10.2307/1991279
40. Kupiec P. H. (2009). How well does the Vasicek—Basel AIRB model fit the data? Evidence from a long time series of corporate credit rating data. FDIC Working Paper Series, No. 2009-10. https://doi.org/10.2139/ssrn.1523246
41. Longin F., Solnik B. (2001). Extreme correlation of international equity markets. Journal of Finance, Vol. 56, No. 2, pp. 649—676. https://doi.org/10.1111/0022-1082.00340
42. Merton R. (1974). On the pricing of corporate debt: The risk structure of interest. Journal of Finance, Vol. 29, No. 2, pp. 449—470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
43. Miller S. M. (1975). A theory of the banking firm: Comment. Journal of Monetary Economics, Vol. 1, No. 1, pp. 123—128. https://doi.org/10.1016/0304-3932(75)90012-4
44. Monti M. (1972). Deposit, credit and interest rate determination under alternative bank objective function. In: G. Szego, K. Shell (eds.). Mathematical methods in investment and finance, pp. 430—454. Amsterdam: North-Holland.
45. Niepmann F., Stebunovs V. (2018). Modeling your stress away. International Finance Discussion Papers, No. 1232. Board of Governors of the Federal Reserve System. https://doi.org/10.17016/IFDP.2018.1232
46. Schierenbeck H., Holländer D., Picker M. (2013). Marktzinsmethode 2.0 — Erweiterte Anforderungen an ein Transferpreiskonzept. Kreditwesen, Vol. 11, No. 33, pp. 579—582.
47. Shalizi C. (2015). Lecture 10: F-Tests, R2, and other distractions. In: Modern regression: Lecture course “36-401” and “36-607” materials). https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/10/lecture-10.pdf
48. The Economist (2018). To understand digital advertising, study its algorithms. A Skinner box for software. The Economist, March 22. https://www.economist.com/science-and-technology/2018/03/22/to-understand-digital-advertising-study-its-algorithms
49. Vasicek O. (1987). Probability of loss on loan portfolio. San Francisco, CA: KMV Corporation.
Дополнительные файлы
Рецензия
Для цитирования:
Пеникас Г.И. Факторы ценообразования розничных кредитов в России. Вопросы экономики. 2023;(6):36-61. https://doi.org/10.32609/0042-8736-2023-6-36-61
For citation:
Penikas H.I. Retail loan pricing determinants in Russia. Voprosy Ekonomiki. 2023;(6):36-61. (In Russ.) https://doi.org/10.32609/0042-8736-2023-6-36-61