

Macroeconomic uncertainty indicators for Russia
https://doi.org/10.32609/0042-8736-2022-9-34-52
Abstract
The role of uncertainty as one of the key channels for transmission of shocks, such as financial shocks in 2008—2009, pandemic in 2020—2022, or sanctions, is regularly highlighted by experts and international organizations. How to measure uncertainty and its effects in practice? Indicators based on financial variables, text analysis of media publications, variance in expert forecasts or firms’ expectations have been traditionally used for these purposes. This paper uses an alternative approach for the Russian case. Uncertainty is estimated as “unforecastibility” of future economic dynamics, that is, as a weighted average of standard deviations of forecast errors for the wide range of macroeconomic and macrofinancial variables. The forecasts are constructed through a factor model based on “big data”. The estimated uncertainty indicators for 1, 3 and 12 months ahead show stronger persistence and countercyclicality compared to alternative indicators. Significant impact of uncertainty shocks on output and CPI is demonstrated, underscoring the need for analysis of mutual impact of uncertainty and effectiveness of countercyclical economic policies.
About the Author
I. V. PrilepskiyRussian Federation
Ilya V. Prilepskiy
Moscow
References
1. Vakulenko E., Gurvich E. (2016). Real wage flexibility in Russia: Comparative analysis. Journal of the New Economic Association, Vol. 31, No. 3, pp. 67—92. (In Russian). https://doi.org/10.31737/2221-2264-2016-31-3-3
2. Naidenova Y., Leonteva V. (2020). Economic policy uncertainty and investment of Russian companies. Voprosy Ekonomiki, No. 2, pp. 141—159. (In Russian). https://doi.org/10.32609/0042-8736-2020-2-141-159
3. Omelchenko A., Khrustalev E. (2018). The model of sanction intensity index: Evidence from Russia. National interests: Priorities and Security, Vol. 14, No. 1, pp. 62—77. (In Russian).
4. Pestova A. A., Rostova N. A. (2020). Economic effects of monetary policy in Russia: What do large datasets tell us? Voprosy Ekonomiki, No. 4, pp. 31—53. (In Russian). https://doi.org/10.32609/0042-8736-2020-4-31-53
5. Fedorova E., Musienko S., Fedorov F. (2019). Development of Russian political uncertainty index (RPUI): Textual analysis. Economics of Contemporary Russia, No. 2, pp. 52—64. (In Russian). https://doi.org/10.33293/1609-1442-2019-2(85)-52-64
6. Afanasyev D., Fedorova E., Ledyaeva S. (2021). Strength of words: Donald Trump’s tweets, sanctions and Russia’s ruble. Journal of Economic Behavior & Organization, Vol. 184, pp. 253—277. https://doi.org/10.1016/j.jebo.2021.02.002
7. Bachmann R., Elstner S., Sims E.R. (2013). Uncertainty and economic activity: Evidence from business survey data. American Economic Journal: Macroeconomics, Vol. 5, No. 2, pp. 217—249. https://doi.org/10.1257/mac.5.2.217
8. Bai J., Ng S. (2002). Determining the number of factors in approximate factor models. Econometrica, Vol. 70, No. 1, pp. 191—221. https://doi.org/10.1111/1468-0262.00273
9. Baker S. R., Bloom N., Davis S. J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, Vol. 131, No. 4, pp. 1593—1636. https://doi.org/10.1093/qje/qjw024
10. Baker S. R., Bloom N., Davis S. J., Terry S. J. (2020). Covid-induced economic uncertainty. NBER Working Paper, No. 26983. https://doi.org/10.3386/w26983
11. Barrero J. M., Bloom N. (2020). Economic uncertainty and the recovery. In: Navigating the decade ahead: Implications for monetary policy. Economic Policy Symposium Proceedings. Jackson Hole: Federal Reserve Bank of Kansas City, pp. 255—284.
12. Bekaert G., Hoerova M., Lo Duca M. (2013). Risk, uncertainty and monetary policy. Journal of Monetary Economics, Vol. 60, No. 7, pp. 771—788. https://doi.org/10.1016/j.jmoneco.2013.06.003
13. Bloom N. (2009). The impact of uncertainty shocks. Econometrica, Vol. 77, No. 3, pp. 623—685. https://doi.org/10.3982/ECTA6248
14. Caldara D., Iacoviello M. (2022). Measuring geopolitical risk. American Economic Review, Vol. 122, No. 4, pp. 1194—1225. https://doi.org/10.1257/aer.20191823
15. Charnavoki V., Dolado J. (2014). The effects of global shocks on small commodity-exporting economies: Lessons from Canada. American Economic Journal: Macroeconomics, Vol. 6, No. 2, pp. 207—237. https://doi.org/10.1257/mac.6.2.207
16. D’Amico S., Orphanides A. (2008). Uncertainty and disagreement in economic forecasting. Federal Reserve Board Finance and Economics Discussion Series, No. 2008-56. https://doi.org/10.17016/FEDS.2008.56
17. Fernández-Villaverde J., Guerrón-Quintana P., Kuester K., Rubio-Ramirez J. (2015). Fiscal volatility shocks and economic activity. American Economic Review, Vol. 105, No. 11, pp. 3352—3384. https://doi.org/10.1257/aer.20121236
18. Fernández-Villaverde J., Guerrón-Quintana P. (2020). Uncertainty shocks and business cycle research. Review of Economic Dynamics, Vol. 37, pp. 118—146. https://doi.org/10.1016/j.red.2020.06.005
19. Gieseck A., Rujin S. (2020). The impact of the recent spike in uncertainty on economic activity in the euro area. ECB Economic Bulletin, No. 6, pp. 61—64.
20. Jurado K., Ludvigson S. C., Ng S. (2015). Measuring uncertainty. American Economic Review, Vol. 105, No. 3, pp. 1117—1216. https://doi.org/10.1257/aer.20131193
21. Kastner G., Frühwirth-Schnatter S. (2013). Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models. Computational Statistics & Data Analysis, Vol. 76, pp. 408—423. https://doi.org/10.1016/j.csda.2013.01.002
22. Lahiri K., Sheng X. (2010). Measuring forecast uncertainty by disagreement: The missing link. Journal of Applied Econometrics, Vol. 25, No. 4, pp. 514—538. https://doi.org/10.1002/jae.1167
23. Ludvigson S. C., Ma S., Ng S. (2021). Uncertainty and business cycles: Exogenous impulse or endogenous response? American Economic Journal: Macroeconomics, Vol. 13, No. 4, pp. 369—410. https://doi.org/10.1257/mac.20190171
24. Moran K., Stevanovic D., Toure A. K. (2022). Macroeconomic uncertainty and the COVID-19 pandemic: Measure and impacts on the Canadian economy. Canadian Journal of Economics, Vol. 55, No. S1, pp. 379—405. https://doi.org/10.1111/caje.12551
25. Ng S. (2021). Modeling macroeconomic variations after Covid-19. NBER Working Paper, No. 29060. https://doi.org/10.3386/w29060
26. Rautava J. (2013). Oil prices, excess uncertainty and trend growth: A forecasting model for Russia’s economy. Focus on European Economic Integration, No. 4, pp. 77—87. Austrian Central Bank.
27. Scotti C. (2016). Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises. Journal of Monetary Economics, Vol. 82, pp. 1—19. https://doi.org/10.1016/j.jmoneco.2016.06.002
28. So E. C. (2013). A new approach to predicting analyst forecast errors: Do investors overweight analyst forecasts? Journal of Financial Economics, Vol. 108, No. 3, pp. 615—640. https://doi.org/10.1016/j.jfineco.2013.02.002
29. Sohag K., Gainetdinova A., Mariev O. (2021). The response of exchange rates to economic policy uncertainty: Evidence from Russia. Borsa Istanbul Review, Vol. 22, No. 3, pp. 534—545. https://doi.org/10.1016/j.bir.2021.07.002
30. Stock J. H., Watson M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, Vol. 20, No. 2, pp. 147—162. https://doi.org/10.1198/073500102317351921
Supplementary files
Review
For citations:
Prilepskiy I.V. Macroeconomic uncertainty indicators for Russia. Voprosy Ekonomiki. 2022;(9):34-52. (In Russ.) https://doi.org/10.32609/0042-8736-2022-9-34-52