Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Testing for structural break in aggregated consumption function of Russian households

https://doi.org/10.32609/0042-8736-2021-5-91-106

Abstract

The paper considers a simple aggregated consumption function for Russian economy in which households consume a constant fraction of a permanent income. The value of this fraction is estimated by households within the framework of the adaptive expectations process based on the dynamics of GDP at constant consumption prices. Testing for a structural break at an unknown date in the parameter of the propensity to consume is performed. The results of econometric estimation, taking into account the presence of an endogeneity in the regression equation, demonstrate that after 2014 there was a structural break, as a result of which the parameter of the propensity to consume of permanent GDP decreased by 6.5—9.2%.

About the Authors

A. V. Polbin
Russian Presidential Academy of National Economy and Public Administration; Gaidar Institute for Economic Policy
Russian Federation

Andrey V. Polbin

Moscow



A. A. Skrobotov
Russian Presidential Academy of National Economy and Public Administration (Moscow); Gaidar Institute for Economic Policy (Moscow, Russia); Saint Petersburg State University (St. Petersburg)
Russian Federation

Anton A. Skrobotov



References

1. Aivazian S. A., Brodsky B. E. (2018). Retrospective analysis of structural changes in SEM (simultaneous equation) models with varying structure. Part 1. Economics and Mathematical Methods, Vol. 54, No. 2, pp. 62—70. (In Russian). https://doi.org/10.7868/S042473881802005X

2. Drobyshevsky S. M., Idrisov G. I., Kaukin A. S., Pavlov P. N., Sinelnikov-Murylev S. G. (2018). Decomposition of Russian GDP growth rates in 2007—2017 and forecast for 2018—2020. Voprosy Ekonomiki, No. 9, pp. 5—31. (In Russian). https://doi.org/10.32609/0042-8736-2018-9-5-31

3. Ershov M. V., Tanasova A. S. (2019). The world and Russia: Inflation is minimal, economic growth is slowing, risks are rising. Voprosy Ekonomiki, No. 12, pp. 5—23. (In Russian). https://doi.org/10.32609/0042-8736-2019-12-5-23

4. Zubarev A. V., Nesterova K. V. (2019). Assessing the consequences of the pension reform in Russia in a global CGEOLG model. HSE Economic Journal, Vol. 23, No. 3, pp. 384—417. (In Russian).

5. Mau V. A. (2020). Economics and politics in 2019—2020: Global challenges and national answers. Voprosy Ekonomiki, No. 3, pp. 5—27. (In Russian). https://doi.org/10.32609/0042-8736-2020-3-5-27

6. Oreshkin M. S. (2018). Prospects of economic policy. Ekonomicheskaya Politika, Vol. 13, No. 3, pp. 8—27. (In Russian). https://doi.org/10.18288/1994-5124-2018-3-01

7. Polbin A. V. (2020). Estimating time-varying long-run growth rate of Russian GDP in the ARX model with oil prices. Ekonomicheskaya Politika, Vol. 15, No. 1, pp. 40—63. (In Russian). https://doi.org/10.18288/1994-5124-2020-1-40-63

8. Polbin A., Sinelnikov-Murylev S. (2020). A simple macro-econometric simultaneous equation model for the Russian economy (Research Paper No. 180). Moscow: Gaidar Institute Publ. (In Russian).

9. Anatolyev S. (2005). GMM, GEL, serial correlation and asymptotic bias. Econometrica, Vol. 73, No. 3, pp. 983—1002. https://doi.org/10.1111/j.1468-0262.2005.00601.x

10. Anatolyev S., Gospodinov N. (2011). Methods for estimation and inference in modern econometrics. Boca Raton, FL: Chapman and Hall/CRC.

11. Andrews D. W. K. (1999). Consistent moment selection procedures for generalized method of moments estimation. Econometrica, Vol. 67, No. 3, pp. 543—564. https://doi.org/10.1111/1468-0262.00036

12. Bai J., Perron P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, Vol. 66, No. 1, pp. 47—78. https://doi.org/10.2307/2998540

13. Baker S.R., Bloom N., Davis S. J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, Vol. 131, No. 4, pp. 1593—1636. https://doi.org/10.1093/qje/qjw024

14. Boldea O., Cornea-Madeira A., Hall A. R. (2019). Bootstrapping structural change tests. Journal of Econometrics, Vol. 213, No. 2, pp. 359—397. https://doi.org/10.1016/j.jeconom.2019.05.019

15. Caldara D., Iacoviello M. (2019). Measuring geopolitical risk. Working paper, Board of Governors of the Federal Reserve Board.

16. Elliott G., Rothenberg T. J., Stock J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, Vol. 64, No. 4, pp. 813—836. https://doi.org/10.2307/2171846

17. Friedman M. A. (1957). Theory of the consumption function. Princeton: Princeton University Press.

18. Kitamura Y. (1997). Empirical likelihood methods with weakly dependent processes. Annals of Statistics, Vol. 25, No. 5, pp. 2084—2102. https://doi.org/10.1214/aos/1069362388

19. Kitamura Y., Stutzer M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica, Vol. 65, No. 4, pp. 861—874. https://doi.org/10.2307/2171942

20. Hall A. R. (2005). Generalized method of moments. New York: Oxford University Press. Hall A. R., Han S., Boldea O. (2012). Inference regarding multiple structural changes in linear models with endogenous regressors. Journal of Econometrics, Vol. 170, No. 2, pp. 281—302. https://doi.org/10.1016/j.jeconom.2012.05.006

21. Hall A. R., Inoue A., Jana K., Shin C. (2007). Information in generalized method of moments estimation and entropy-based moment selection. Journal of Econometrics, Vol. 138, No. 2, pp. 488—512. https://doi.org/10.1016/j.jeconom.2006.05.006

22. Hall A. R., Peixe F. P. M. (2003). A consistent method for the selection of relevant instruments in linear models. Econometric Reviews, Vol. 22, No. 3, pp. 269—288. https://doi.org/10.1081/ETC-120024752

23. Hansen B. E. (2000). Testing for structural change in conditional models. Journal of Econometrics, Vol. 97, No. 1, pp. 93—115. https://doi.org/10.1016/S0304-4076(99)00068-8

24. Hansen L. P. (1982). Large sample properties of generalized methods of moments estimators. Econometrica, Vol. 50, No. 4, pp. 1029—1054. https://doi.org/10.2307/1912775

25. Hansen L. P., Heaton J., Yaron A. (1996). Finite-sample properties of some alternative GMM estimators. Journal of Business and Economic Statistics, Vol. 14, No. 3, pp. 262—280. https://doi.org/10.1080/07350015.1996.10524656

26. Hong H., Preston B., Shum M. (2003). Generalized empirical likelihood-based model selection criteria for moment condition models. Econometric Theory, Vol. 19, No. 6, pp. 923—943. https://doi.org/10.1017/S0266466603196028

27. Kurozumi E. (2002). Testing for stationarity with a break. Journal of Econometrics, Vol. 108, No. 1, pp. 63—99. https://doi.org/10.1016/S0304-4076(01)00106-3

28. Kwiatkowski D., Phillips P. C. B., Schmidt P., Shin Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, Vol. 54, No. 1—3, pp. 159—178. https://doi.org/10.1016/0304-4076(92)90104-Y

29. Newey W. K., Smith R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica, Vol. 72, No. 1, pp. 219—255. https://doi.org/10.1111/j.1468-0262.2004.00482.x

30. Newey W. K., West K. D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, Vol. 61, No. 4, pp. 631—653. https://doi.org/10.2307/2297912

31. Ng S., Perron P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, Vol. 69, No. 6, pp. 1519—1554. https://doi.org/10.1111/1468-0262.00256

32. Owen A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, Vol. 75, No. 2, pp. 237—249. https://doi.org/10.1093/biomet/75.2.237

33. Perron P., Qu Z. (2007). A simple modification to improve the finite sample properties of Ng and Perrons unit root tests. Economics Letters, Vol. 94, No. 1, pp. 12—19. https://doi.org/10.1016/j.econlet.2006.06.009

34. Perron P., Yamamoto Y. (2014). A note on estimating and testing for multiple structural changes in models with endogenous regressors via 2SLS. Econometric Theory, Vol. 30, No. 2, pp. 491—507. https://doi.org/10.1017/S0266466613000388

35. Perron P., Yamamoto Y. (2015). Using OLS to estimate and test for structural changes in models with endogenous regressors. Journal of Applied Econometrics, Vol. 30, No. 1, pp. 119—144. https://doi.org/10.1002/jae.2320

36. Polbin A. (2020). Multivariate unobserved component model for an oil-exporting economy: The сase of Russia. Applied Economics Letters, Vol. 28, No. 8, pp. 681—685. https://doi.org/10.1080/13504851.2020.1770678

37. Polbin A., Sinelnikov-Murylev S. (2020). A simple macro-econometric simultaneous equation model for the Russian economy. Post-Communist Economies. https://doi.org/10.1080/14631377.2020.1793607

38. Smith R. J. (1997). Alternative semi-parametric likelihood approaches to generalized method of moments estimation. Economic Journal, Vol. 107, No. 441, pp. 503—519. https://doi.org/10.1111/j.0013-0133.1997.174.x


Supplementary files

Review

For citations:


Polbin A.V., Skrobotov A.A. Testing for structural break in aggregated consumption function of Russian households. Voprosy Ekonomiki. 2021;(5):91-106. (In Russ.) https://doi.org/10.32609/0042-8736-2021-5-91-106

Views: 1454


ISSN 0042-8736 (Print)