Preview

Вопросы экономики

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Концепция технологической инновационной системы: основные положения и возможности

https://doi.org/10.32609/0042-8736-2022-5-99-120

Аннотация

Концепция технологической инновационной системы (ТИС) — это сис­темный подход к анализу развития, распространения и использования новых технологий. Данная концепция широко применяется при изучении технологи­ческих инноваций в развитых странах. В России она пока не получила широко­го распространения. В статье детально описываются основные концептуальные положения ТИС, показаны ее принципиальные особенности. Сделан вывод о том, что, несмотря на недостатки, ТИС позволяет провести всесторонний анализ развития технологий в рамках существующих социально-экономических, политических и организационных факторов и способствует пониманию механизма возникновения и динамики новых технологий и индустрий.

Об авторах

Т. А. Невзорова
Уральский федеральный университет имени первого Президента России Б. Н. Ельцина
Россия

Невзорова Татьяна Анатольевна, с. н. с. научно-исследовательской лаборатории по проблемам университетского развития

Екатеринбург



В. Г. Кучеров
Российский государственный университет нефти и газа (научно-исследовательский университет) имени И. М. Губкина
Россия

Кучеров Владимир Георгиевич, проф. кафедры физики

Москва



Список литературы

1. Голиченко О. Г. (2012). Основные факторы развития национальной инновационной системы // Инновации. № 5. С. 4—18.

2. Голиченко О. Г. (2014). Национальная инновационная система: от концепции к методологии исследования // Вопросы экономики. № 7. С. 35—50. https://doi.org/10.32609/0042-8736-2014-7-35-50

3. Bento N., Fontes M. (2015). The construction of a new technological innovation system in a follower country: Wind energy in Portugal. Technological Forecasting and Social Change, Vol. 99, pp. 197—210. https://doi.org/10.1016/j.techfore.2015.06.037

4. Bergek A., Hekkert M., Jacobsson S., Markard J., Sandén B., Truffer B. (2015). Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environmental Innovation and Societal Transitions, Vol. 16, pp. 51—64. https://doi.org/10.1016/j.eist.2015.07.003

5. Bergek A., Hekkert M. P., Jacobsson S. (2008a). Functions in innovation systems: A framework for analysing energy system dynamics and identifying goals for system building activities by entrepreneurs and policy makers. In: T. Foxon, J. Köhler, C. Ought (eds.). Innovation for a low carbon economy: Economic, institutional and management approaches. Cheltenham: Edward Elgar, pp. 79—111.

6. Bergek A., Jacobsson S., Carlsson B., Lindmark S., Rickne A. (2008b). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, Vol. 37, No. 3, pp. 407—429. https://doi.org/10.1016/j.respol.2007.12.003

7. Binz C., Tang T., Huenteler J. (2017). Spatial lifecycles of cleantech industries — The global development history of solar photovoltaics. Energy Policy, Vol. 101, pp. 386—402. https://doi.org/10.1016/j.enpol.2016.10.034

8. Braczyk H. J., Cooke P., Heidenreich M. (1998). Regional innovation systems. London: UCL Press.

9. Breschi S., Malerba F. (1997). Sectoral innovation systems: Technical regimes, Schumpeterian dynamics and spatial boundaries. In: C. Edquist (ed.). Systems of innovation: Technologies, institutions, and organizations. London: Pinter Publishers, pp. 130—156.

10. Caprotti F. (2017). Protecting innovative niches in the green economy: Investigating the rise and fall of Solyndra, 2005—2011. GeoJournal, Vol. 82, pp. 937—955. https://doi.org/10.1007/s10708-016-9722-2

11. Carlsson B. (2016). Industrial dynamics: A review of the literature 1990—2009. Industry and Innovation, Vol. 23, No. 1, pp. 1—61. https://doi.org/10.1080/13662716.2015.1120658

12. Carlsson B., Holmen M., Jacobsson S., Rickne A., Stankiewicz R. (2002). The analytical approach and methodology. In: B. Carlsson (еd.). Technological systems in the bio industry: An international study. Boston: Kluwer, pp. 9—33.

13. Carlsson B., Stankiewicz R. (1991). On the nature, function and composition of technological systems. Journal of Evolutionary Economics, Vol. 1, pp. 93—118. https://doi.org/10.1007/BF01224915

14. Coenen L. ( 2015). Engaging with changing spatial realities in TIS research. Environmental Innovation and Societal Transitions, Vol. 16, pp. 70—72. https://doi.org/10.1016/j.eist.2015.07.008

15. Cohen W. M., Levinthal D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, Vol. 35, No. 1, pp. 128—152. https://doi.org/10.2307/2393553

16. Cooke P., Heidenreich M., Braczyk H. (2004). Regional innovation systems (2nd ed.). London: Routledge.

17. Cooke P., Uranga M.G., Etxebarria G. (1997). Regional innovation systems: Institutional and organisational dimensions. Research Policy, Vol. 26, No. 4—5, pp. 475—491. https://doi.org/10.1016/S0048-7333(97)00025-5

18. Darmani A., Arvidsson N., Hidalgo A., Albors J. (2014). What drives the development of renewable energy technologies? Toward a typology for the systemic drivers. Renewable and Sustainable Energy Reviews, Vol. 38, pp. 834—847. https://doi.org/10.1016/j.rser.2014.07.023

19. Dewald U., Truffer B. (2011). Market formation in technological innovation systems — Diffusion of photovoltaic applications in Germany. Industry and Innovation, Vol. 18, No. 3, pp. 285—300. https://doi.org/10.1080/13662716.2011.561028

20. Edquist C. (1997). Systems of innovation: Technologies, institutions and organizations. London: Pinter Publishers/Cassell Academic.

21. Edquist C. (2004). Systems of innovation: Perspectives and challenges. In: J. Fagerberg, D. C. Mowery, R. R. Nelson (еds.). Oxford handbook of innovation. Oxford: Oxford University Press, pp. 181—208.

22. Edsand H.E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society, Vol. 49, pp. 1—15. https://doi.org/10.1016/j.techsoc.2017.01.002

23. Farla J., Alkemade F., Suurs R. A. A. (2010). Analysis of barriers in the transition toward sustainable mobility in the Netherlands. Technological Forecasting and Social Change, Vol. 77, No. 8, pp. 1260—1269. https://doi.org/10.1016/j.techfore.2010.03.014

24. Foray D. (2004). The economics of knowledge. Cambridge, MA: MIT Press.

25. Foxon T. (2003). Inducing innovation for a low-carbon future: Drivers, barriers and policies. A report for The Carbon Trust. London: The Carbon Trust.

26. Freeman C. (1987). Technology Policy and Economic Performance: Lessons from Japan. London: Pinter Publishers.

27. Gosens J., Lu Y. (2013). From lagging to leading? Technological innovation systems in emerging economies and the case of Chinese wind power. Energy Policy, Vol. 60, pp. 234—250. https://doi.org/10.1016/j.enpol.2013.05.027

28. Greenacre P., Gross R., Speirs J. (2012). Innovation theory: A review of the literature. ICEPT Working Paper, Ref: ICEPT/WP/2012/011.

29. Hansen T., Coenen L. (2017). Unpacking resource mobilisation by incumbents for biorefineries: Тhe role of micro-level factors for technological innovation system weaknesses. Technology Analysis & Strategic Management, Vol. 29, No. 5, pp. 500—513. https://doi.org/10.1080/09537325.2016.1249838

30. Hanson J. (2018). Established industries as foundations for emerging technological innovation systems: The case of solar photovoltaics in Norway. Environmental Innovation and Societal Transitions, Vol. 26, pp. 64—77. https://doi.org/10.1016/j.eist.2017.06.001

31. Hekkert M. P., Negro S. O. (2009). Functions of innovation systems as a framework to understand sustainable technological change: Empirical evidence for earlier claims. Technological Forecasting and Social Change, Vol. 76, pp. 584—594. https://doi.org/10.1016/j.techfore.2008.04.013

32. Hekkert M. P., Suurs R. A. A., Negro S. O., Kuhlmann S., Smits R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, Vol. 74, pp. 413—432. https://doi.org/10.1016/j.techfore.2006.03.002

33. Hellsmark H., Jacobsson S. (2009). Opportunities for and limits to Academics as System builders — The case of realizing the potential of gasified biomass in Austria. Energy Policy, Vol. 37, pp. 5597—5611. https://doi.org/10.1016/j.enpol.2009.08.023

34. Hellsmark H., Mossberg J., Söderholm P., Frishammar J. (2016). Innovation system strengths and weaknesses in progressing sustainable technology: The case of Swedish biorefinery development. Journal of Cleaner Production, Vol. 131, pp. 702—715. https://doi.org/10.1016/j.jclepro.2016.04.109

35. Hoppmann J., Huenteler J., Girod B. (2014). Compulsive policy-making — The evolution of the German feed-in tariff system for solar photovoltaic power. Research Policy, Vol. 43, No. 8, pp. 1422—1441. https://doi.org/10.1016/j.respol.2014.01.014

36. Huang P., Negro S. O., Hekkert M. P., Bi K. (2016). How China became a leader in solar PV: An innovation system analysis. Renewable and Sustainable Energy Reviews, Vol. 64, pp. 777—789. https://doi.org/10.1016/j.rser.2016.06.061

37. IRENA (2020). Country rankings. https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Country-Rankings

38. Jacobsson S., Bergek A. (2011). Innovation system analyses and sustainability transitions: Contributions and suggestions for research. Environmental Innovation and Societal Transitions, Vol. 1, pp. 41—57. https://doi.org/10.1016/j.eist.2011.04.006

39. Kebede K. Y., Mitsufuji T. (2017). Technological innovation system building for diffusion of renewable energy technology: A case of solar PV systems in Ethiopia. Technological Forecasting and Social Change, Vol. 114, pp. 242—253. https://doi.org/10.1016/j.techfore.2016.08.018

40. Kieft A., Harmsen R., Hekkert M.P. (2017). Interactions between systemic problems in innovation systems: The case of energy-efficient houses in the Netherlands. Environmental Innovation and Societal Transitions, Vol. 24, pp. 32—44. https://doi.org/10.1016/j.eist.2016.10.001

41. Kushnir D., Hansen T., Vogl V., Åhman M. (2020). Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study. Journal of Cleaner Production, Vol. 242, pp. 118—185. https://doi.org/10.1016/j.jclepro.2019.118185

42. Lau A. K. W., Lo W. (2015). Regional innovation system, absorptive capacity and innovation performance: An empirical study. Technological Forecasting and Social Change, Vol. 92, pp. 99—114. https://doi.org/10.1016/j.techfore.2014.11.005

43. Lundvall B. . (1992). National systems of innovation: Тowards a theory of innovation and interactive learning. London: Pinter Publishers.

44. Lundvall B. . (2007). National innovation systems — Analytical concept and development tool. Industry and Innovation, Vol. 14, pp. 95—119. https://doi.org/10.1080/13662710601130863

45. Malerba F. (2002). Sectoral systems of innovation and production. Research Policy, Vol. 31, No. 2, pp. 247—264. https://doi.org/10.1016/S0048-7333(01)00139-1

46. Malerba F., Adams P. (2019). Sectoral systems of innovation. In: M. Dodgson, D. M. Gann, N. Phillips (eds.). The Oxford handbook of innovation management. Oxford: Oxford University Press, pp. 183—203. https://doi.org/10.1093/oxfordhb/9780199694945.013.030

47. Malerba F., Pisano G. P. (2019). Innovation, competition and sectoral evolution: Аn introduction to the special section on industrial dynamics. Industrial and Corporate Change, Vol. 28, No. 3, pp. 503—510. https://doi.org/10.1093/icc/dtz017

48. Markard J., Hekkert M., Jacobsson S. (2015). The technological innovation systems framework: Response to six criticisms. Environmental Innovation and Societal Transitions, Vol. 16, pp. 76—86. https://doi.org/10.1016/j.eist.2015.07.006

49. Markard J., Stadelmann M., Truffer B. (2009). Prospective analysis of technological innovation systems: Identifying technological and organizational development options for biogas in Switzerland. Research Policy, Vol. 38, No. 4, pp. 655—667. https://doi.org/10.1016/j.respol.2009.01.013

50. Markard J., Truffer B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, Vol. 37, No. 4, pp. 596—615. https://doi.org/10.1016/j.respol.2008.01.004

51. Markard J., Wirth S., Truffer B. (2016). Institutional dynamics and technology legitimacy — A framework and a case study on biogas technology. Research Policy, Vol. 45, No. 1, pp. 330—344. https://doi.org/10.1016/j.respol.2015.10.009

52. Musiolik J., Markard J., Hekkert M. (2012). Networks and network resources in technological innovation systems: Towards a conceptual framework for system building. Technological Forecasting and Social Change, Vol. 79, No. 6, pp. 1032—1048. https://doi.org/10.1016/j.techfore.2012.01.003

53. Negro S.O., Alkemade F., Hekkert M.P. (2012). Why does renewable energy diffuse so slowly? A review of innovation system problems. Renewable and Sustainable Energy Reviews, Vol. 16, No. 6, pp. 3836—3846. https://doi.org/10.1016/j.rser.2012.03.043

54. Nelson R.R. (1993). National innovation systems: А comparative analysis. New York: Oxford University Press.

55. Nevzorova T., Karakaya E. (2020). Explaining the drivers of technological innovation systems: The case of biogas technologies in mature markets. Journal of Cleaner Production, Vol. 259, article 120819. https://doi.org/10.1016/j.jclepro.2020.120819

56. North D.C. (1990). Institutions, institutional change and economic performance. Cambridge: Cambridge University Press.

57. Planko J., Cramer J., Hekkert M. P., Chappin M. M. H. (2017). Combining the technological innovation systems framework with the entrepreneurs’ perspective on innovation. Technology Analysis & Strategic Management, Vol. 29, No. 6, pp. 614—625. https://doi.org/10.1080/09537325.2016.1220515

58. Quitzow R. (2015). Dynamics of a policy-driven market: The co-evolution of technological innovation systems for solar photovoltaics in China and Germany. Environmental Innovation and Societal Transitions, Vol. 17, pp. 126—148. https://doi.org/10.1016/j.eist.2014.12.002

59. Rakas M., Hain D. S. (2019). The state of innovation system research: What happens beneath the surface? Research Policy, Vol. 48, No. 9, article 103787. https://doi.org/10.1016/j.respol.2019.04.011

60. Rosenberg N. (1982). Inside the black box: Technology and economics. Cambridge, MA: Cambridge University Press.

61. Sixt G. N., Klerkx L., Griffin T. S. (2018). Transitions in water harvesting practices in Jordan’s rainfed agricultural systems: Systemic problems and blocking mechanisms in an emerging technological innovation system. Environmental Science & Policy, Vol. 84, pp. 235—249. https://doi.org/10.1016/j.envsci.2017.08.010

62. STRN (2019). 33rd STRN Newsletter. Sustainability Transitions Research Network. https://transitionsnetwork.org/category/news/newsletter/

63. Suurs R. A. A. (2009). Motors of sustainable innovation: Towards a theory on the dynamics of technological innovation systems. Utrecht: Innovation Study Group, Utrecht University.

64. Suurs R. A. A., Hekkert M. P. (2009a). Cumulative causation in the formation of a technological innovation system: The case of biofuels in the Netherlands. Technological Forecasting and Social Change, Vol. 76, No. 8, pp. 1003—1020. https://doi.org/10.1016/j.techfore.2009.03.002

65. Suurs R. A. A., Hekkert M. P. (2009b). Competition between first and second generation technologies: Lessons from the formation of a biofuels innovation system in the Netherlands. Energy, Vol. 34, No. 5, pp. 669—679. https://doi.org/10.1016/j.energy.2008.09.002

66. Suurs R. A. A., Hekkert M. P., Kieboom S., Smits R. E. H. M. (2010). Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel. Energy Policy, Vol. 38, No. 1, pp. 419—431. https://doi.org/10.1016/j.enpol.2009.09.032

67. Swedish Energy Agency (2014). Teknologiska innovationssystem inom energiområdet. ER 2014:23. Eskilstuna: Swedish Energy Agency.

68. Tigabu A.D., Berkhout F., van Beukering P. (2015a). Technology innovation systems and technology diffusion: Adoption of bio-digestion in an emerging innovation system in Rwanda. Technological Forecasting and Social Change, Vol. 90, Part A, pp. 318—330. https://doi.org/10.1016/j.techfore.2013.10.011

69. Tigabu A.D., Berkhout F., van Beukering P. (2015b). The diffusion of a renewable energytechnology and innovation system functioning: Comparing bio-digestion in Kenya and Rwanda. Technological Forecasting and Social Change, Vol. 90, Part A, pp. 331—345. https://doi.org/10.1016/j.techfore.2013.09.019

70. Truffer B. (2015). Challenges for Technological Innovation Systems research: Introduction to a debate. Environmental Innovation and Societal Transitions, Vol. 16, pp. 65—66. https://doi.org/10.1016/j.eist.2015.06.007

71. Varadi P. (2014). Sun above the horizon: Meteoric rise of the solar industry. Singapore: Pan Stanford Publishing.

72. Vasseur V., Kamp L. M., Negro S.O. (2013). A comparative analysis of Photovoltaic Technological Innovation Systems including international dimensions: The cases of Japan and the Netherlands. Journal of Cleaner Production, Vol. 48, pp. 200—210. https://doi.org/10.1016/j.jclepro.2013.01.017

73. Weber K. M., Truffer B. (2017). Moving innovation systems research to the next level: Тowards an integrative agenda. Oxford Review of Economic Policy, Vol. 33, No. 1, pp. 101—121. https://doi.org/10.1093/oxrep/grx002

74. Wieczorek A. J., Hekkert M. P., Coenen L., Harmsen R. (2015). Broadening the national focus in technological innovation system analysis: The case of offshore wind. Environmental Innovation and Societal Transitions, Vol. 14, pp. 128—148. https://doi.org/10.1016/j.eist.2014.09.001

75. Wirth S., Markard J. ( 2011). Context matters: How existing sectors and competing technologies affect the prospects of the Swiss Bio-SNG innovation system. Technological Forecasting and Social Change, Vol. 78, No. 4, pp. 635—649. https://doi.org/10.1016/j.techfore.2011.01.001

76. Woolthuis R. K., Lankhuizen M., Gilsing V. (2005). A system failure framework for innovation policy design. Technovation, Vol. 25, No. 6, pp. 609—619. https://doi.org/10.1016/j.technovation.2003.11.002

77. Yam R. C. M., Lo W., Tang E. P. Y., Lau A. K. W. (2011). Analysis of sources of innovation, technological innovation capabilities and performance: Аn empirical study of Hong Kong manufacturing industries. Research Policy, Vol. 40, No. 3, pp. 391—402. https://doi.org/10.1016/j.respol.2010.10.013

78. Zhang F., Gallagher K. S. (2016). Innovation and technology transfer through global value chains: Evidence from China’s PV industry. Energy Policy, Vol. 94, pp. 191— 203. https://doi.org/10.1016/j.enpol.2016.04.014

79. Zhi Q., Sun H., Li Y., Xu Y., Su J. (2014). China’s solar photovoltaic policy: An analysis based on policy instruments. Applied Energy, Vol. 129, pp. 308—319. https://doi.org/10.1016/j.apenergy.2014.05.014


Дополнительные файлы

Рецензия

Для цитирования:


Невзорова Т.А., Кучеров В.Г. Концепция технологической инновационной системы: основные положения и возможности. Вопросы экономики. 2022;(5):99-120. https://doi.org/10.32609/0042-8736-2022-5-99-120

For citation:


Nevzorova T.A., Kutcherov V.G. The concept of technological innovation system: The basic principles and opportunities. Voprosy Ekonomiki. 2022;(5):99-120. (In Russ.) https://doi.org/10.32609/0042-8736-2022-5-99-120

Просмотров: 1126


ISSN 0042-8736 (Print)