Preview

Вопросы экономики

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Нарративный анализ в экономической теории как восхождение к сложности

https://doi.org/10.32609/0042-8736-2020-4-5-30

Полный текст:

Аннотация

В статье проанализированы два «поворота», произошедшие в последние десятилетия в экономической науке, — к сложности и к субъективной информации, — и роль нарративного анализа в их успешном осуществлении. Рассмотрены основные положения такого анализа и показано, что он является действенным только по отношению к группам индивидов, которые располагают ресурсным потенциалом, позволяющим трактовать сюжеты нарративов как осуществимые альтернативы принятия решений. Показано, что агент-ориентированные модели в настоящее время наиболее эффективные инструменты реализации в теоретических и эмпирических исследованиях в рамках сдвигов как к сложности, так и к субъективной информации.

Об авторе

В. Л. Тамбовцев
МГУ имени М. В. Ломоносова
Россия

Тамбовцев Виталий Леонидович, д. э. н., проф. экономического факультета

Москва



Список литературы

1. Анкудинов А. Б., Беляева М. Н., Лебедев О. В. (2012). Влияние диверсификации на эффективность региональной экономики // Региональная экономика: теория и практика. № 31 (262). С. 8—20.

2. Любимов И. Л., Оспанова А. Г. (2019). Как сделать экономику сложнее? Поиск причин усложнения // Вопросы экономики. № 2. С. 35—53. https://doi.org/10.32609/0042-8736-2019-2-36-53

3. Макаров В. Л. (2012). Искусственные общества // Экономика и математические методы. Т. 48, № 3. С. 3—20.

4. Макаров В. Л., Бахтизин А. Р. (2013). Социальное моделирование — новый компьютерный прорыв (агент-ориентированные модели). М.: Экономика.

5. Пропп В. (1928). Морфология сказки. Ленинград: Academia.

6. Тамбовцев В. Л. (1993). Пятый рынок: экономические проблемы производства информации. М.: Изд-во МГУ.

7. Тамбовцев В. Л. (2005). Экономическая теория институциональных изменений. М.: Теис.

8. Тамбовцев В. Л. (2019). Идеи, нарративы и изменения в экономике // Terra Economicus. Т. 17, вып. 1. С. 24—40. https://doi.org/10.23683/2073-6606-2019-17-1-24-40

9. Abell P. (2003). The role of rational choice and narrative action theories in sociological theory: The legacy of Coleman’s foundations. Revue Francaise de Sociologie, Vol. 44, No. 2, pp. 255—273. https://doi.org/10.2307/3323135

10. Abramovitz M. (1994). The origins of the postwar catch-up and convergence boom. In: J. Fagerberg, B. Verspagen, N. von Tunzelman (eds.). The dynamics of technology, trade and growth. Aldershot: Edward Elgar, pp. 21—52.

11. Achen C. H. (2002). Toward a new political methodology: Microfoundations and ART. Annual Review of Political Science, Vol. 5, pp. 423—450. https://doi.org/10.1146/annurev.polisci.5.112801.080943

12. Akerlof G. A. (1970). The market for ‘lemons’: Quality uncertainty and the market mechanism. Quarterly Journal of Economics, Vol. 84, No. 3, pp. 488—500. https://doi.org/10.2307/1879431

13. Akerlof G. A., Snower D. J. (2016). Bread and bullets. Journal of Economic Behavior & Organization, Vol. 126, Part B, pp. 58—71. https://doi.org/10.1016/j.jebo.2015.10.021

14. Alуs-Ferrer C. (2018). A review essay on Social Neuroscience: Can research on the social brain and economics inform each other? Journal of Economic Literature, Vol. 56, No. 1, pp. 234—264. https://doi.org/10.1257/jel.20171370

15. Arrow K. J. (1963). Uncertainty and the welfare economics of medical care. American Economic Review, Vol. 53, No. 5, pp. 941—973.

16. Arthur W. B. (2013). Complexity economics: A different framework for economic thought. Santa Fe Institute Working Paper, No. 2013-04-012.

17. Auvinen T., Aaltio I., Blomqvist K. (2013). Constructing leadership by storytelling — the meaning of trust and narratives. Leadership & Organization Development Journal, Vol. 34, No. 6, pp. 496—514. https://doi.org/10.1108/LODJ-10-2011-0102

18. Bain R. (1929). The concept of complexity in sociology: I. Social Forces, Vol. 8, No. 2, pp. 222—231. https://doi.org/10.2307/2569583

19. Banerjee A. V. (1992). A simple model of herd behavior. Quarterly Journal of Economics, Vol. 107, No. 3, pp. 797—817. https://doi.org/10.2307/2118364

20. Bargh J. A., Chartrand T. L. (1999). The unbearable automaticity of being. American Psychologist, Vol. 54, No. 7, pp. 462—479. https://doi.org/10.1037/0003-066X.54.7.462

21. Bargh J. A., Ferguson M. J. (2000). Beyond behaviorism: On the automaticity of higher mental processes. Psychological Bulletin, Vol. 126, No. 6, pp. 925—945. https://doi.org/10.1037/0033-2909.126.6.925

22. Bargh J. A., Schwader K. L., Hailey S. E., Dyer R. L., Boothby E. J. (2012). Automaticity in social-cognitive processes. Trends in Cognitive Sciences, Vol. 16, No. 12, pp. 593—605. https://doi.org/10.1016/j.tics.2012.10.002

23. Baumeister R. F., Masicampo E. J. (2010). Conscious thought is for facilitating social and cultural interactions: How mental simulations serve the animal—culture interface. Psychological Review, Vol. 117, No. 3, pp. 945—997. https://doi.org/10.1037/a0019393

24. Baumeister R. F., Lau S., Maranges H. M., Clark C. J. (2018). On the necessity of consciousness for sophisticated human action. Frontiers in Psychology, Vol. 9, Article 1925. https://doi.org/10.3389/fpsyg.2018.01925

25. Bhargava R. (1992). Individualism in social science: Forms and limits of a methodology . Oxford: Clarendon Press.

26. Bikhchandani S., Hirshleifer D., Welch I. (1992). A theory of fads, fashion, custom, and cultural change in informational cascades. Journal of Political Economy, Vol. 100, No. 5, pp. 992—1026. https://doi.org/10.1086/261849

27. Bikhchandani S., Hirshleifer D., Welch I. (1998). Learning from the behavior of others: Conformity, fads, and informational cascades. Journal of Economic Perspectives, Vol. 12, No. 3, pp. 151—170. https://doi.org/10.1257/jep.12.3.151

28. Boettke P. J. (2002). Information and knowledge: Austrian economics in search of its uniqueness. Review of Austrian Economics, Vol. 15, No. 4, pp. 263—274. https://doi.org/10.1023/A:1021190719156

29. Boulenger V., Roy A. C., Paulignan Y., Deprez V., Jeannerod M., Nazir T. A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. Journal of Cognitive Neuroscience, Vol. 18, No. 10, pp. 1607—1615. https://doi.org/10.1162/jocn.2006.18.10.1607

30. Bourgais M., Taillandier P., Vercouter L., Adam C. (2018). Emotion modeling in social simulation: A survey. Journal of Artificial Societies and Social Simulation, Vol. 21, No. 2, Article 5. https://doi.org/10.18564/jasss.3681

31. Braem S., Trapp S. (2019). Humans show a higher preference for stimuli that are predictive relative to those that are predictable. Psychological Research, Vol. 83, No. 5, pp. 567—573. https://doi.org/10.1007/s00426-017-0935-x

32. Bratman M. E., Israel D. J. (1988). Plans and resource-bounded practical reason- ing. Computational Intelligence, Vol. 4, No. 3, pp. 349—355. https://doi.org/10.1111/j.1467-8640.1988.tb00284.x

33. Byrd T. A., Cossick K. L., Zmud R. W. (1992). A synthesis of research on requirements analysis and knowledge acquisition techniques. MIS Quarterly, Vol. 16, No. 1, pp. 117—138. https://doi.org/10.2307/249704

34. Byrne G. (2017). Narrative inquiry and the problem of representation: ‘Giving voice’, mak- ing meaning. International Journal of Research & Method in Education, Vol. 40, No. 1, pp. 36—52. https://doi.org/10.1080/1743727X.2015.1034097

35. Camerer C., Loewenstein G., Prelec D. (2005). Neuroeconomics: How neuroscience can inform economics. Journal of Economic Literature, Vol. 43, No. 1, pp. 9—64. https://doi.org/10.1257/0022051053737843

36. Cilliers P. (2000). What can we learn from a theory of complexity? Emergence, Vol. 2, No. 1, pp. 23—33. https://doi.org/10.1207/S15327000EM0201_03

37. Coase R. H. (1937). The nature of the firm. Economica, New Series, Vol. 4, No. 16, pp. 386—405. https://doi.org/10.1111/j.1468-0335.1937.tb00002.x

38. Colander D. (2003). The complexity revolution and the future of economics. Department of Economics Working Paper Series, No. 0319, Middlebury College.

39. Coleman J. (1986). Social theory, social research, and a theory of action. American Journal of Sociology, Vol. 91, No. 6, pp. 1309—1335. https://doi.org/10.1086/228423

40. Collin C. (2017). Economic structures, institutions and economic performance. Journal of Economic Structures, Vol. 6, Article 2. https://doi.org/10.1186/s40008-017-0063-1

41. Collins J. (1985). Some problems and purposes of narrative analysis in educational research. Journal of Education, Vol. 167, No. 1, pp. 57—70. https://doi.org/10.1177/002205748516700105

42. Cowan W.M., Harter D. H., Kandel E. R. (2000). The emergence of modern neuroscience: Some implications for neurology and psychiatry. Annual Review of Neuroscience, Vol. 23, pp. 343—391. https://doi.org/10.1146/annurev.neuro.23.1.343

43. Czarniawska B. (2004). Narratives in social science research. Introducing qualitative methods. London: Sage Publications.

44. Dautenhahn K. (2002). The origins of narrative: In search of the transactional format of narratives in humans and other social animals. International Journal of Cognition and Technology, Vol. 1, No. 1, pp. 97—123. https://doi.org/10.1075/ijct.1.1.07dau

45. Dechesne F., Di Tosto G., Dignum V., Dignum F. (2013). No smoking here: Values, norms and culture in multi-agent systems. Artificial Intelligence and Law, Vol. 21, No. 1, pp. 79—107. https://doi.org/10.1007/s10506-012-9128-5

46. Del Missier F., Mäntylä T., De Bruin W. B. (2012). Decision-making competence, execu- tive functioning, and general cognitive abilities. Journal of Behavioral Decision Making, Vol. 25, No. 4, pp. 331—351. https://doi.org/10.1002/bdm.731

47. Denning S. (2006). Effective storytelling: Strategic business narrative techniques. Strategy & Leadership, Vol. 34, No. 1, pp. 42—48. https://doi.org/10.1108/10878570610637885

48. Denzau A., North D. (1994). Shared mental models, ideologies and institutions. Kyklos, Vol. 47, No. 1, pp. 3—31. https://doi.org/10.1111/j.1467-6435.1994.tb02246.x

49. DeWall C. N., Deckman T., Pond R. S., Jr., Bonser I. (2011). Belongingness as a core personality trait: How social exclusion influences social functioning and personality expression. Journal of Personality, Vol. 79, No. 6, pp. 1281—1314. https://doi.org/10.1111/j.1467-6494.2010.00695.x

50. Dietrich F., List C. (2016). Mentalism versus behaviourism in economics: A philosophy-ofscience perspective. Economics & Philosophy, Vol. 32, No. 2, pp. 249—281. https://doi.org/10.1017/S0266267115000462

51. Dissart J.-C. (2003). Regional economic diversity and regional economic stability: Research results and agenda. International Regional Science Review, Vol. 26, No. 4, pp. 423—446. https://doi.org/10.1007/s10458-009-9093-x

52. Dolphin T., Nash D. (eds.) (2012). Complex new world. Translating new economic thinking into public policy. London: Institute for Public Policy Research.

53. Dosi G., Roventini A. (2019). More is different... and complex! The case for agent-based macroeconomics. Journal of Evolutionary Economics, Vol. 29, No. 1, pp. 1—37. https://doi.org/10.1007/s00191-019-00609-y

54. Dunbar R. I. M. (2004). Gossip in evolutionary perspective. Review of General Psychology, Vol. 8, No. 2, pp. 100—110. https://doi.org/10.1037/1089-2680.8.2.100

55. Durlauf S. N. (2012). Complexity, economics, and public policy. Politics, Philosophy & Economics, Vol. 11, No. 1, pp. 45—75. https://doi.org/10.1177/1470594X11434625

56. Eagar T., Dann S. (2016). Classifying the narrated #selfie: Genre typing human-brand- ing activity. European Journal of Marketing, Vol. 50, No. 9/10, pp. 1835—1857. https://doi.org/10.1108/EJM-07-2015-0509

57. Elsner W. (2017). Complexity economics as heterodoxy: Theory and policy. Journal of Economic Issues, Vol. LI, No. 4, pp. 939—978. https://doi.org/10.1080/00213624.2017.1391570

58. Epstein J. M. (1999). Agent-based computational models and generative social science. Complexity, Vol. 4, No. 5, рр. 41—60. https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5%3C41::AID-CPLX9%3E3.0.CO;2-F

59. Fagerberg J., Srholec M. (2017). Capabilities, economic development, sustainability. Cambridge Journal of Economics, Vol. 41, No. 3, pp. 905—926. https://doi.org/10.1093/cje/bew061

60. Farmer J. D., Foley D. (2009). The economy needs agent-based modelling. Nature, Vol. 460, No. 7256, pp. 685—686. https://doi.org/10.1038/460685a

61. Fehr E., Fischbacher U. (2002). Why social preferences matter — the impact of non- selfish motives on competition, cooperation and incentives. Economic Journal, Vol. 112, No. 478, pp. C1—C33. https://doi.org/10.1111/1468-0297.00027

62. Felin T., Foss N. J., Heimeriks K. H., Madsen T. L. (2012). Microfoundations of routines and capabilities: Individuals, processes, and structure. Journal of Management Studies, Vol. 49, No. 8, pp. 1351—1374. https://doi.org/10.1111/j.1467-6486.2012.01052.x

63. Felin T., Foss N. J., Ployhart R. E. (2015). The microfoundations movement in strate gy and organization theory. Academy of Management Annals, Vol. 9, No. 1, pp. 575—632. https://doi.org/10.5465/19416520.2015.1007651

64. Felipe J., Kumar U., Abdon A., Bacate M. (2012). Product complexity and economic de- velopment. Structural Change and Economic Dynamics. Vol. 23, No. 1, рр. 36—68. https://doi.org/10.1016/j.strueco.2011.08.003

65. Fenton C., Langley A. (2011). Strategy as practice and the narrative turn. Organization Studies, Vol. 32, No. 9, pp. 1171—1196. https://doi.org/10.1177/0170840611410838

66. Flache A., Mäs M., Feliciani T., Chattoe-Brown E., Deffuant G., Huet S., Lorenz J. (2017). Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, Vol. 20, No. 4, Article 2. https://doi.org/10.18564/jasss.3521

67. Flyvbjerg B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, Vol. 12, Nо. 2, pp. 219—245. https://doi.org/10.1177/1077800405284363

68. Fontana M. (2010). Can neoclassical economics handle complexity? The fallacy of the oil spot dynamic. Journal of Economic Behavior & Organization, Vol. 76, рр. 584—596. https://doi.org/10.1016/j.jebo.2010.08.010

69. Foster J. (2005). From simplistic to complex systems in economics. Cambridge Journal of Economics, Vol. 29, No. 6, pp. 873—892. doi:10.1093/cje/bei083

70. Frantz C. K., Pigozzi G. (2018). Modelling norm dynamics in multi-agent systems. Journal of Applied Logics, Vol. 5, No. 2, pp. 491—563.

71. Frenken K., Van Oort F., Verburg T. (2007). Related variety, unrelated variety and regional economic growth. Regional Studies, Vol. 41, No. 5, pp. 685—697. https://doi.org/10.1080/00343400601120296

72. Fuller S., de Mey M., Shinn T., Woolgar S. (eds.) (1989). The cognitive turn: Sociological and psychological perspectives on science. Springer Science.

73. Funke M., Ruhwedel R. (2001). Product variety and economic growth: Empirical evi- dence for the OECD countries. IMF Staff Papers, Vol. 48, No. 2, pp. 225—242. https://doi.org/10.2307/4621668

74. Gala P., Rocha I., Magacho G. (2018). The structuralist revenge: Economic complexity as an important dimension to evaluate growth and development. Brazilian Journal of Political Economy, Vol. 38, No. 2, pp. 219—236. https://doi.org/10.1590/0101-31572018v38n02a01

75. Gary M. S., Wood R. E. (2011). Mental models, decision rules, and performance hetero- geneity. Strategic Management Journal, Vol. 32, No. 6, pp. 569—594. https://doi.org/10.1002/smj.899

76. Georgeff M., Pell B., Pollack M., Tambe M., Wooldridge M. (1999). The belief-desire-in- tention model of agency. In: J. P. Müller, A. S. Rao, M. P. Singh (eds.). Intelligent agents V: Agents theories, architectures, and languages. Berlin: Springer, pp. 1—10.

77. Gertsen M. C., Søderberg A. M. (2011). Intercultural collaboration stories: On narra- tive inquiry and analysis as tools for research in international business. Journal of International Business Studies, Vol. 42, No. 6, pp. 787—804. https://doi.org/10.1057/jibs.2011.15

78. Gill R. (2011). Using storytelling to maintain employee loyalty during change. International Journal of Business and Social Science, Vol. 2, No. 15, pp. 23—32.

79. Giovanini A., Arend M. (2017). Contribution of services to economic growth: Kaldor’s fifth law? Revista de Administração Mackenzie, Vol. 18, No. 4, pp. 190—213. https://doi.org/10.1590/1678-69712017/administracao.v18n4p190-213

80. Goldman A. I. (2012). Theory of mind. In: E. Margolis, R. Samuels, S. P. Stich (eds.). The Oxford handbook of philosophy of cognitive science. Oxford: Oxford University Press, pp. 402—424.

81. Gräbner C. (2015). Methodology does matter: About implicit assumptions in applied formal modelling. MPRA Paper, No. 63003.

82. Gräbner C. (2016). Agent-based computational models — a formal heuristic for institu- tionalist pattern modelling? Journal of Institutional Economics, Vol. 12, No. 1, pp. 241—261. https://doi.org/10.1017/S1744137415000193

83. Gray S. A., Zanre E., Gray S. R. J. (2014). Fuzzy cognitive maps as representations of mental models and group beliefs. In: E. Papageorgiou (ed.). Fuzzy cogni- tive maps for applied sciences and engineering. Berlin-Heidelberg: Springer, pp. 29—48.

84. Green S. E. (2004). A rhetorical theory of diffusion. Academy of Management Review, Vol. 29, No. 4, pp. 653—669. https://doi.org/10.5465/amr.2004.14497653

85. Grow A., Flache A. (2019). Agent-based computational models of reputation and status dynamics. In: F. Giardini, R. Wittek (eds.). The Oxford handbook of gossip and reputation. Oxford University Press, pp. 230—248. https://doi.org/10.1093/oxfordhb/9780190494087.013.13

86. Güth W., Ploner M. (2017). Mentally perceiving how means achieve ends. Rationality and Society, Vol. 29, No. 2, pp. 203—225. https://doi.org/10.1177/1043463116678114

87. Hanna N., Richards D. (2018). The impact of multimodal communication on a shared mental model, trust, and commitment in human—intelligent virtual agent teams. Multimodal Technologies and Interaction, Vol. 2, No. 3, Article 48. https://doi.org/10.3390/mti2030048

88. Harrison G. W. (2008). Neuroeconomics: A critical reconsideration. Economics & Philosophy, Vol. 24, No. 3, pp. 303—344. https://doi.org/10.1017/S0266267108002009

89. Hartley J. E. (1996). The origins of the representative agent. Journal of Economic Perspectives, Vol. 10, No. 2, pp. 169—177. https://doi.org/10.1257/jep.10.2.169

90. Hartmann D., Guevara M. R., Jara-Figueroa C., Aristarán M., Hidalgo C. A. (2017). Linking economic complexity, institutions, and income inequality. World Development, Vol. 93, рр. 75—93. https://doi.org/10.1016/j.worlddev.2016.12.020

91. Hayek F. A. (1937). Economics and knowledge. Economica, Vol. 4, No. 13, pp. 33—54. https://doi.org/10.2307/2548786

92. Hayek F. A. (1945). The use of knowledge in society. American Economic Review, Vol. 35, No. 4, pp. 519—530.

93. Heise A. (2017). Whither economic complexity? A new heterodox economic paradigm or just another variation within the mainstream? International Journal of Pluralism and Economics Education, Vol. 8, No. 2, рр. 115—129. https://doi.org/10.1504/IJPEE.2017.10006435

94. Hidalgo C. A., Hausmann R. (2009). The building blocks of economic complexity. PNAS, Vol. 106, No. 24, pp. 10570—10575. https://doi.org/10.1073/pnas.0900943106

95. Holt R. P. F., Rosser J. B., Jr., Colander D. (2011). The complexity era in economics. Review of Political Economy, Vol. 23, No. 3, pp. 357—369. https://doi.org/10.1080/09538259.2011.583820

96. Honig O., Reichard A. (2018). Evidence-fabricating in asymmetric conflicts: How weak actors prove false propaganda narratives. Studies in Conflict & Terrorism, Vol. 41, No. 4, pp. 297—318. https://doi.org/10.1080/1057610X.2017.1283199

97. Hsu J. (2008). The secrets of storytelling: Our love for telling tales reveals the workings of the mind. Scientific American: Mind, Vol. 19, No. 4, pp. 46—51. https://doi.org/10.1038/scientificamericanmind0808-46

98. Ivanova I., Smorodinskaya N., Leydesdorff L. (2020). On measuring complexity in a post-industrial economy: The ecosystem’s approach. Quality & Quantity, Vol. 54, pp. 197—212. https://doi.org/10.1007/s11135-019-00844-2

99. Jameson D. A. (2000). Telling the investment story: A narrative analysis of share- holder reports. International Journal of Business Communication, Vol. 37, No. 1, pp. 7—38. https://doi.org/10.1177/002194360003700101

100. Jones H., Chollet M., Ochs M., Sabouret N., Pelachaud C. (2014). Expressing social attitudes in virtual agents for social coaching. In: Workshop affect, compagnon artificiel, interaction. Rouen, pp. 65—70.

101. Jones M. D., McBeth K. M. (2010). A narrative policy framework: Clear enough to be wrong? Policy Studies Journal, Vol. 38, No. 2, рр. 329—353. https://doi.org/10.1111/j.1541-0072.2010.00364.x

102. Jussim L. (2017). Précis of social perception and social reality: Why accuracy dominates bias and self-fulfilling prophecy. Behavioral and Brain Sciences, Vol. 40, No. e1, pp. 1—66. https://doi.org/10.1017/S0140525X1500062X

103. Kemp-Benedict E. (2014). An interpretation and critique of the method of reflections. MPRA Paper, No. 60705. https://mpra.ub.uni-muenchen.de/60705/

104. Kermack W. O., McKendrick A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, Series A, Vol. 115, No. 772, pp. 700—721. https://doi.org/10.1098/rspa.1927.0118

105. Kim L. (1997). Imitation to innovation: The dynamics of Korea’s technological learning. Cambridge, MA: Harvard Business School Press.

106. Koppl R. (2011). Against representative agent methodology. Review of Austrian Economics, Vol. 24, No. 1, pp. 43—55. https://doi.org/10.1007/s11138-010-0119-z

107. Kruglanski A. W., Gigerenzer G. (2011). Intuitive and deliberate judgments are based on common principles. Psychological Review, Vol. 118, No. 1, pp. 97—109. https://doi.org/10.1037/a0020762

108. Ladyman J., Lambert J., Wiesner K. (2013). What is a complex system? European Journal for Philosophy of Science, Vol. 3, No. 1, pp. 33—67. https://doi.org/10.1007/s13194-012-0056-8

109. Lapatinas A., Kyriakou A., Garas A. (2019). Taxation and economic sophistication: Evidence from OECD countries. PLoS ONE, Vol. 14, No. 3, e0213498. https://doi.org/10.1371/journal.pone.0213498

110. Lapatinas A., Litina A. (2019). Intelligence and economic sophistication. Empirical Economics, Vol. 57, No. 5, pp. 1731—1750. https://doi.org/10.1007/s00181-018-1511-y

111. Laverde-Rojas H., Correa J. C. (2019). Can scientific productivity impact the economic complexity of countries? Scientometrics, Vol. 120, No. 1, pp. 267—282. https://doi.org/10.1007/s11192-019-03118-8

112. Legros S., Cislaghi B. (2020). Mapping the social-norms literature: An overview of re- views. Perspectives on Psychological Science, Vol. 15, No. 1, pp. 62—80. https://doi.org/10.1177/1745691619866455

113. Levy D. J., Glimcher P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, Vol. 22, No. 6, pp. 1027—1038. https://doi.org/10.1016/j.conb.2012.06.001

114. Liau C.-J. (2003). Belief, information acquisition, and trust in multi-agent systems — a modal logic formulation. Artificial Intelligence, Vol. 149, pp. 31—60. https://doi.org/10.1016/S0004-3702(03)00063-8

115. Lindenberg S. (1998).The cognitive turn in institutional analysis: Beyond NIE and NIS? Journal of Institutional and Theoretical Economics, Vol. 154, No. 4, pp. 716—727.

116. Liu W., Williams M.-A. (2001). A framework for multi-agent belief revision. Studia Logica: An International Journal for Symbolic Logic, Vol. 67, No. 2, pp. 291—312. https://doi.org/10.1023/A:1010555305483

117. Luce R. D., Raiffa H. (2012 [1957]). Games and decisions: Introduction and critical survey. New York: Dover Publication.

118. Maguire S., Hardy C. (2009). Discourse and deinstitutionalization: The decline of DDT. Academy of Management Journal, Vol. 52, No. 1, pp. 148—178. https://doi.org/10.5465/amj.2009.36461993

119. Mahmoud M. A., Ahmad M. S., Yusoff M. Z. M., Mustapha A. (2014). A review of norms and normative multiagent systems. Scientific World Journal, Vol. 2014, Article ID 684587. https://doi.org/10.1155/2014/684587

120. Malheiro B., Jennings N. R., Oliveira E. (1994). Belief revision in multi-agent systems. In: A. Cohn (ed.). 11 th European Conference on Artificial Intelligence. Amsterdam: John Wiley & Sons, pp. 294—298.

121. Mar R. A. (2011). The neural bases of social cognition and story comprehension. Annual Review of Psychology, Vol. 62, pp. 103—134. https://doi.org/10.1146/annurev-psych-120709-145406

122. Mar R., Oatley K., Djikic M., Mullin J. (2011). Emotion and narrative fiction: Interactive influences before, during, and after reading. Cognition and Emotion, Vol. 25, No. 5, pp. 818—833. https://doi.org/10.1080/02699931.2010.515151

123. Marshall A. (1895). Principles of economics. London: Macmillan.

124. Mascarenhas S., Degens N., Paiva A., Prada R., Hofstede G. J., Beulens A., Aylett R. (2016). Modeling culture in intelligent virtual agents. Autonomous Agents and Multi-Agent Systems, Vol. 30, No. 5, pp. 931—962. https://doi.org/10.1007/s10458-015-9312-6

125. McAndrew F., Milenkovic M. A. (2002). Of tabloids and family secrets: The evolutionary psychology of gossip. Journal of Applied Social Psychology, Vol. 32, No. 5, pp. 1064—1082. https://doi.org/10.1111/j.1559-1816.2002.tb00256.x

126. Morgan S., Dennehy R. F. (1997). The power of organizational storytelling: A manage- ment development perspective. Journal of Management Development, Vol. 16, No. 7, pp. 494—501. https://doi.org/10.1108/02621719710169585

127. Morin E. (1992). From the concept of system to the paradigm of complexity. Journal of Social and Evolutionary Systems, Vol. 15, No. 4, pp. 371—385. https://doi.org/10.1016/1061-7361(92)90024-8

128. Mumby D. K. (1987). The political function of narrative in organizations. Communication Monographs, Vol. 54, No. 2, pp. 113—127. https://doi.org/10.1080/03637758709390221

129. Napoletano M. (2018). A short walk on the wild side: Agent-based models and their implications for macroeconomic analysis. Revue de l’OFCE, Vol. 157, No. 3, pp. 257—281. https://doi.org/10.3917/reof.157.0257

130. Neumann M. (2010). A classification of normative architectures. In: K. Takadama, C. Cioffi-Revilla, G. Deffuant (eds.). Simulating interacting agents and social phenomena. Agent-based social systems, Vol. 7. Tokyo: Springer, pp. 3—18.

131. Nickerson J. A., Zenger T. R. (2004). A knowledge-based theory of the firm: The problem- solving perspective. Organization Science, Vol. 15, No. 6, pp. 617—632. https://doi.org/10.1287/orsc.1040.0093

132. North M., Macal C. (2007). Managing business complexity: Discovering strategic solutions with agent-based modeling and simulation. Oxford University Press.

133. Oatley K. (2008). The mind’s flight simulator. Psychologist, Vol. 21, No. 12, pp. 1030—1032.

134. Oatley K. (2012). The cognitive science of fiction. Wiley Interdisciplinary Reviews: Cognitive Science, Vol. 3, No. 4, pp. 425—430. https://doi.org/10.1002/wcs.1185

135. Padoa-Schioppa C., Conen K. E. (2017). Orbitofrontal cortex: A neural circuit for eco- nomic decisions. Neuron, Vol. 96, No. 4, pp. 736—754. https://doi.org/10.1016/j.neuron.2017.09.031

136. Pauly M. V. (1968). The economics of moral hazard: Comment. American Economic Review, Vol. 58, No. 3, Part 1, pp. 531—537.

137. Phillips N., Lawrence T. B., Hardy C. (2004). Discourse and institutions. Academy of Management Review, Vol. 29, No. 4, pp. 635—652. https://doi.org/10.5465/amr.2004.14497617

138. Polkinghorne D. E. (1987). Narrative knowing and the human sciences. Albany, NY: State University of New York Press.

139. Rees A. (1968). Economics. In: D. L. Sills (ed.). International encyclopedia of the social sciences, Vol. 4. New York: MacMillan, Free Press, pp. 472—285.

140. Reichmann W. (2013). Epistemic participation: How to produce knowledge about the eco- nomic future. Social Studies of Science, Vol. 43, No. 6, pp. 852—877. https://doi.org/10.1177/0306312713498641

141. Reis H. T., Lemay E. P., Jr., Finkenauer C. (2017). Toward understanding understand- ing: The importance of feeling understood in relationships. Social and Personality Psychology Compass, Vol. 11, No. 3, No. e12308. https://doi.org/10.1111/spc3.12308

142. Rhodes C., Brown A. D. (2005). Narrative, organizations and research. International Journal of Management Reviews, Vol. 7, No. 3, pp. 167—188. https://doi.org/10.1111/j.1468-2370.2005.00112.x

143. Robbins L. (1928). The representative firm. Economic Journal, Vol. 38, No. 151, рр. 387—404. https://doi.org/10.2307/2224316

144. Rogers E. M. (1995). Diffusion of innovations. New York: Free Press.

145. Ross S. A. (1973). The economic theory of agency: The principal’s problem. American Economic Review, Vol. 63, No. 2, pp. 134—139.

146. Rowland R. C. (1989). On limiting the narrative paradigm: Three case studies. Communications Monographs, Vol. 56, No. 1, pp. 39—54. https://doi.org/10.1080/03637758909390248

147. Sbardella A., Pugliese E., Zaccaria A., Scaramozzino P. (2018). The role of complex analysis in modelling economic growth. Entropy, Vol. 20, No. 11, Article 883. https://doi.org/10.3390/e20110883

148. Schinckus C. (2019). Agent-based modelling and economic complexity: A diversified perspective. Journal of Asian Business and Economic Studies, Vol. 26, No. 2, pp. 170—188. https://doi.org/10.1108/JABES-12-2018-0108

149. Schohl F. (1999). The paradoxical fate of the representative firm. Journal of the History of Economic Thought, Vol. 21, No. 1, pp. 65—80. https://doi.org/10.1017/S1053837200002856

150. Seitz A. R., Watanabe T. (2009). The phenomenon of task-irrelevant perceptual learn- ing. Vision Research, Vol. 49, No. 21, pp. 2604—2610. https://doi.org/10.1016/j.visres.2009.08.003

151. Sepehrdoust H., Davarikish R., Setarehie M. (2019). The knowledge-based products and economic complexity in developing countries. Heliyon, Vol. 5, e02979. https://doi.org/10.1016/j.heliyon.2019.e02979

152. Shankar A., Elliott R., Goulding C. (2001). Understanding consumption: Contributions from a narrative perspective. Journal of Marketing Management, Vol. 17, No. 3—4, pp. 429—453.

153. Shenhav S. R. (2006). Political narratives and political reality. International Political Science Review, Vol. 27, No. 3, pp. 245—262. https://doi.org/10.1177/0192512106064474

154. Shiller R. J. (2017). Narrative economics. American Economic Review, Vol. 107, No. 4, pp. 967—1004. https://doi.org/10.1257/aer.107.4.967

155. Si M., Marsella S. C., Pynadath D. V. (2010). Modeling appraisal in theory of mind reasoning. Autonomous Agents and Multi-Agent Systems, Vol. 20, Article 14. https://doi.org/10.1007/s10458-009-9093-x

156. Simon H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, Vol. 69, No. 1, pp. 99—118. https://doi.org/10.2307/1884852

157. Simon H. A. (1957). Models of man: Social and rational. New York: Wiley & Sons.

158. Simon H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, Vol. 106, No. 6, pp. 467—482.

159. Skocpol T., Pierson P. (2002). Historical institutionalism in contemporary political science. In: I. Katznelson, H. V. Milner (eds.). Political science: State of the discipline . New York: W.W. Norton, pp. 693—721.

160. Soon C. S., Brass M., Heinze H.-J., Haynes J.-D. (2008). Unconscious determi- nants of free decisions in the human brain. Nature Neuroscience, Vol. 11, No. 5, pp. 543—545. https://doi.org/10.1038/nn.2112

161. Speer N. K., Reynolds J. R., Swallow K. M., Zacks J. M. (2009). Reading stories acti- vates neural representations of visual and motor experiences. Psychological Science, Vol. 20, No. 8, pp. 989—999. https://doi.org/10.1111/j.1467-9280.2009.02397.x

162. Spence A. M. (1973). Job market signaling. Quarterly Journal of Economics, Vol. 87, No. 3, pp. 355—374. https://doi.org/10.2307/1882010

163. Spreng R. N., Mar R. A., Kim A. S. N. (2008). The common neural basis of autobio- graphical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, Vol. 21, No. 3, pp. 489—510. https://doi.org/10.1162/jocn.2008.21029

164. Squazzoni F. (2010). The impact of agent-based models in the social sciences after 15 years of incursions. History of Economic Ideas, Vol. 18, No. 2, pp. 197—233.

165. Stanovich K. E., West R. F. (2008). On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology, Vol. 94, No. 4, pp. 672—695. https://doi.org/10.1037/0022-3514.94.4.672

166. Steunebrink B. R., Dastani M., Meyer J.-J. (2006). Emotions as heuristics in multi- agent systems. In: D. Reichardt, P. Levi, J.-J. Meyer (eds.). Proceedings of the 1 st Workshop on Emotion and Computing. University of Bremen, pp. 15—18.

167. Stiglitz J. E. (2002). Information and the change in the paradigm in economics. American Economic Review, Vol. 92, No. 3, pp. 460—501. https://doi.org/10.1257/00028280260136363

168. Stojkoski V., Utkovski Z., Kocarev L. (2016). The impact of services on economic com- plexity: Service sophistication as route for economic growth. PLoS ONE, Vol. 11, No. 8, e0161633. https://doi.org/10.1371/journal.pone.0161633

169. Strack F., Deutsch R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, Vol. 8, No. 3, pp. 220—247. https://doi.org/10.1207/s15327957pspr0803_1

170. Tacchella A., Cristelli M., Caldarelli G., Gabrielli A., Pietronero L. (2012). A new metrics for countries’ fitness and products’ complexity. Science Reports, Vol. 2, Article 723. https://doi.org/10.1038/srep00723

171. Tomasello M., Carpenter M., Call J., Behneand T., Moll H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, Vol. 28, No. 5, pp. 675—691. https://doi.org/10.1017/S0140525X05000129

172. Tversky A., Kahneman D. (1971). Belief in the law of small numbers. Psychological Bulletin, Vol. 76, No. 2, pp. 105—110. https://doi.org/10.1037/h0031322

173. Vaara E., Sonenshein S., Boje D. (2016). Narratives as sources of stability and change in organizations: Approaches and directions for future research. Academy of Management Annals, Vol. 10, No. 1, pp. 495—560. https://doi.org/10.5465/19416520.2016.1120963

174. van Laer T., de Ruyter K., Visconti L. M., Wetzels M. (2014). The extended trans- portation-imagery model: A meta-analysis of the antecedents and consequences of consumers’ narrative transportation. Journal of Consumer Research, Vol. 40, No. 5, pp. 797—817. https://doi.org/10.1086/673383

175. Vinci G. V., Benzi R. (2018). Economic complexity: Correlations between gross domestic product and fitness. Entropy, Vol. 20, No. 10, Article 766. https://doi.org/10.3390/e20100766

176. Volz K. G., Gigerenzer G. (2012). Cognitive processes in decisions under risk are not the same as in decisions under uncertainty. Frontiers in Neuroscience: Decision Neuroscience, Vol. 6, Article 105. https://doi.org/10.3389/fnins.2012.00105

177. Von Bertalanffy L. (1950). An outline of general system theory. British Journal for the Philosophy of Science, Vol. 1, No. 2, pp. 134—165. https://doi.org/10.1093/bjps/I.2.134

178. Vu T. V. (2019). Does institutional quality foster economic complexity? University of Otago Economics Discussion Papers, No. 1909. https://www.otago.ac.nz/economics/otago719628.pdf

179. Wagner J. E., Deller S. C. (1998). Measuring the effects of economic diversity on growth and stability. Land Economics, Vol. 74, No. 4, pp. 541—556. https://doi.org/10.2307/3146884

180. Walsh J. P. (1995). Managerial and organizational cognition: Notes from a trip down memory lane. Organization Science, Vol. 6, No. 3, pp. 280—321. https://doi.org/10.1287/orsc.6.3.280

181. Wert S. R., Salovey P. (2004). A social comparison account of gossip. Review of General Psychology, Vol. 8, No. 2, pp. 122—137. https://doi.org/10.1037/1089-2680.8.2.122

182. Williamson O. E. (1973). Markets and hierarchies: Some elementary considerations. American Economic Review, Vol. 63, No. 2, pp. 316—325.

183. Williamson O. E. (2000). The new institutional economics: Taking stock, looking ahead. Journal of Economic Literature, Vol. 38, No. 3, pp. 595—613. https://doi.org/10.1257/jel.38.3.595

184. Wimmer H., Perner J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, Vol. 13, No. 1, pp. 103—128. https://doi.org/10.1016/0010-0277(83)90004-5

185. Woodside A. G. (ed.) (2017). The complexity turn cultural, management, and marketing applications. Cham: Springer International Publishing.

186. Zebregs S., van den Putte B., Neijens P., de Graaf A. (2015). The differential impact of statistical and narrative evidence on beliefs, attitude, and intention: A meta- analysis. Health Communication, Vol. 30, No. 3, pp. 282—289. https://doi.org/10.1080/10410236.2013.842528

187. Zilber T. B. (2002). Institutionalization as an interplay between actions, meanings, and actors: The case of a rape crisis center in Israel. Academy of Management Journal, Vol. 45, No. 1, pp. 234—254. https://doi.org/10.2307/3069294


Для цитирования:


Тамбовцев В.Л. Нарративный анализ в экономической теории как восхождение к сложности. Вопросы экономики. 2020;(4):5-30. https://doi.org/10.32609/0042-8736-2020-4-5-30

For citation:


Tambovtsev V.L. Narrative analysis in economics as climbing complexity. Voprosy Ekonomiki. 2020;(4):5-30. (In Russ.) https://doi.org/10.32609/0042-8736-2020-4-5-30

Просмотров: 529


ISSN 0042-8736 (Print)