

Energy efficiency and economic growth
https://doi.org/10.32609/0042-8736-2019-10-32-63
Abstract
Many Russian and foreign economists are not sure, why it is essential to take efforts to improve energy efficiency in general and in Russia in particular. Unlike labour productivity improvement, energy efficiency improvements are viewed as desirable for the economic growth, yet not at all sine qua non, as economic growth is taken as mostly driven by labour and capital, with an inconspicuous shadow of energy vaguely swaying in the background. This paper aims to show the actual importance of improving energy efficiency to achieve economic growth. It highlights the contribution of energy efficiency in addressing five problems related to economic growth: removal of growth constraints by improving the affordability of energy; improvement of competitiveness; enhancement of multifactor productivity through a better ‘quality of energy’; mitigation of the natural resources scarcity; ensuring growth despite tough environmental limitations. Historically, 1 percent GDP per capita growth requires 0.5—0.8% reduction in GDP energy intensity. This latter value grows as the level of economic development increases.
Keywords
JEL: E3; E25; N7; O1; O4; O5; P52; Q3; Q4; Q5
References
1. Bashmakov I. A. (1988). Energy consumption and economic growth: Proportion evolution drivers and constraints. Energetika. Aktualnye Problemy, Iss. 1, pp. 50—62. (In Russian).
2. Bashmakov I. A. (ed.) (1992). Global energy: Lessons of the future. Moscow: Energy Research Institute. (In Russian).
3. Bashmakov I. (2004). Readiness and willingness of population to pay for housing and communal services. Voprosy Ekonomiki, No. 4, pp. 136—150. (In Russian). https://doi.org/10.32609/0042-8736-2004-4-136-150
4. Bashmakov I. (2016). “Economics of the constants” and long cycles of energy prices dynamics. Voprosy Ekonomiki, No. 7, pp. 36—63. (In Russian). https://doi.org/10.32609/0042-8736-2016-7-36-63
5. Kondratiev N. D. (1993). The long waves in economic life. In: Kondratiev N. D. Selected works. M.: Ekonomika. (In Russian).
6. Melentiev L. A. (1987). An outline of domestic energy history. Moscow: Nauka. (In Russian).
7. IPCC (2014). Summary for policymakers. In: Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer et al. (eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 1—30.
8. Aucott M., Hall C. (2014). Does a change in price of fuel affect GDP growth? An examination of the U.S. data from 1950—2013. Energies, Vol. 7, No. 10, pp. 6558—6570. https://doi.org/10.3390/en7106558
9. Bashmakov I. (1992). What are the current characteristics of the global energy systems? In: G. I. Pearman (ed.). Limiting greenhouse effect: Options for controlling atmospheric CO 2 accumulation. New York: Wiley, pp. 59—82.
10. Bashmakov I. (2007). Three laws of energy transitions. Energy Policy, Vol. 35, No. 7, pp. 3583—3594. https://doi.org/10.1016/j.enpol.2006.12.023
11. Bashmakov I. (2017). The first law of energy transitions and carbon pricing. International Journal of Energy, Environment, and Economics, Vol. 25, No. 1, pp. 1—42.
12. Bashmakov I., Grubb M. (2016). “Minus one” and energy costs constants. Paper presented at the XVII April International Academic Conference on Economic and Social Development, National Research University Higher School of Economics, Moscow, April 19—22.
13. Bashmakov I., Myshak A. (2018). ‘Minus 1’ and energy costs constants: Sectorial implications. Journal of Energy, Vol. 2018, Article ID 8962437. https://doi.org/10.1155/2018/8962437.
14. Blanco et al. (2014). Drivers, trends and mitigation. In: O. Edenhofer et al. (eds.). Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 351—411.
15. Bolt J., Inklaar R., de Jong H., van Zanden J. L. (2018). Rebasing “Maddison”: New income comparisons and the shape of long-run economic development. Maddison Project Working Paper, No. 10. http://www.ggdc.net/maddison for documentation and explanation of the data series.
16. BP (2018). BP statistical review of world energy. June.
17. Brown M. (1966). On the theory and measurement of technological change. Cambridge: Cambridge University Press.
18. Вruckner T., Bashmakov I. A., Mulugetta Y. et al. (2014). Energy systems. In: O. Edenhofer et al. (eds.). Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 511—597.
19. Court V., Fizaine F. (2017). Long-term estimates of the energy-return-on-investment (EROI) of coal, oil, and gas global productions. Ecological Economics, Vol. 138, pp. 145—159. https://doi.org/10.1016/j.ecolecon.2017.03.015
20. Court V., Jouvet P.-A., Lantz F. (2018). Long-term endogenous economic growth and energy transitions. The Energy Journal, Vol. 39, No. 1, pp. 29—57. https://doi.org/10.5547/01956574.39.1.vcou
21. Csereklyei Z., Rubio-Varas M. d. M., Stern D. I. (2016). Energy and economic growth: The stylized facts. The Energy Journal, Vol. 37, No. 2, pp. 223—256. https://doi.org/10.5547/01956574.37.2.zcse
22. De Long B. J. (1998). Estimating world GDP, one million B.C. — present. Mimeo, http://www.j-bradford-delong.net/TCEH/2000/World_GDP/Estimating_World_GDP.html
23. De Stercke S. (2014). Dynamics of energy systems: A useful perspective (IIASA Interim Report No. IR-14-013). International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
24. Fizaine F., Court V. (2016). Energy expenditure, economic growth, and the minimum EROI of society. Energy Policy, Vol. 95, pp. 172—186. https://doi.org/10.1016/j.enpol.2016.04.039
25. Fouquet R. (2008). Heat, power and light: Revolutions in energy services. Cheltenham, UK, & Northampton, MA, USA: Edward Elgar Publications.
26. Fouquet R. (2010). The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy, Vol. 38, pp. 6586—6596. https://doi.org/10.1016/j.enpol.2010.06.029
27. Fouquet R. (2011). Long-run trends in energy related energy costs. Ecological Economics, Vol. 70, pp. 2380—2389. https://doi.org/10.1016/j.ecolecon.2011.07.020
28. Fouquet R. (2013). Long run demand for energy services: The role of economic and technological development. BC3 Working Paper Series, No. 2013-03. Basque Centre for Climate Change (BC3), Bilbao, Spain.
29. Gales B., Kander A., Malanima P., Rubio M. (2007). North versus South energy transition and energy intensity in Europe over 200 years. European Review of Economic History, Vol. 11, No. 2, pp. 219—253. https://doi.org/10.1017/s1361491607001967
30. Goldenberg J., Reddy A. K. N. (1990). Energy for the developing world. Scientific American, Vol. 263, No. 3, pp. 111—118. https://doi.org/10.1038/scientificamerican0990-110
31. Grubb M., Bashmakov I., Drummond P., Myshak A., Hughes N., Biancardi A., Agnolucci P., Lowe R. (2018). Minus 1: Empirics, theory and implications of the “Bashmakov—Newbery range of energy expenditure”. Report to the Institute of New Economic Thought, 2017, published by UCL, March.
32. Grubb M., Hourcade J.-C., Neuhoff K. (2014). Planetary economics. Energy, climate change and the three domains of sustainable development. London and New York: Routledge.
33. Grubler A., Johansson T. B., Mundaca L., Nakicenovic N., Pachauri S., Riahi K., Rogner H.-H., Strupeit L. (2012). Chapter 1: Energy primer. In: Global energy assessment — Toward a sustainable future. Cambridge, UK and New York: Cambridge University Press; Laxenburg, Austria: The International Institute for Applied Systems Analysis, pp. 99—150.
34. Hammoudeh S., Lahiani A., Nguyen D. K., Sousa R. M. (2015). An empirical analysis of energy cost pass-through to CO 2 emission prices. Energy Economics, Vol. 49, pp. 149—156. https://doi.org/10.1016/j.eneco.2015.02.013
35. Henriques S. T., Borowiecki K. J. (2014). The drivers of long-run CO 2 emissions: A global perspective since 1800. EHES Working Paper, No. 62.
36. Hossain A. K. M. N., Serletisy A. (2017). A century of interfuel substitution. Journal of Commodity Markets, Vol. 8, pp. 28—42. https://doi.org/10.1016/j.jcomm.2017.09.001
37. IEA (2015). Energy efficiency market report 2015. Market trends and medium-term prospects. OECD/IEA.
38. IEA (2016). Energy and air pollution. OECD/IEA.
39. IEA (2018). Energy efficiency 2018. Market Report Series. Analysis and outlooks to 2040. OECD/IEA.
40. Kander A. (2002). Economic growth, energy consumption and CO 2 emissions in Sweden 1800—2000. Lund Studies in Economic History, Vol. 19. Lund, Sweden.
41. King C. (2015). Comparing world economic and net energy metrics, Part 3: macroeconomic historical and future perspectives. Energies, Vol. 8, No. 11, pp. 12997—13020. https://doi.org/10.3390/en81112348
42. Krausmann F., Gingrich S., Eisenmenger N., Erb K.-H., Haberl H., Fischer-Kowalski M. (2009). Growth in global materials use, GDP and population during the 20 th century. Ecological Economics, Vol. 68, No. 10, pp. 2696—2705. https://doi.org/10.1016/j.ecolecon.2009.05.007
43. Lambert J. G., Hall C. A. S., Balogh S., Gupta A., Arnold M. (2014). Energy, EROI and quality of life. Energy Policy, Vol. 64, pp. 153—167. https://doi.org/10.1016/j.enpol.2013.07.001
44. Malanima P. (2016). Energy consumption in England and Italy, 1560—1913. Two pathways toward energy transition. Economic History Review, Vol. 69, No. 1, pp. 78—103. https://doi.org/10.1111/ehr.12109
45. Malla S., Timilsina G. R. (2014). Household cooking fuel choice and adoption of improved cookstoves in developing countries: A review. Policy Research Working Paper, No. 6903. The World Bank, Development Research Group, Environment and Energy Team.
46. Murphy D. J., Hall C. A. S. (2011). Energy return on investment, peak oil, and the end of economic growth. Annals of the New York Academy of Sciences, Vol. 1219, No. 1, pp. 52—72. https://doi.org/10.1111/j.1749-6632.2010.05940.x
47. OECD (2006). The world economy. Vol. 1: A millennial perspective. Vol. 2: Historical statistics. Paris: Development Centre Studies.
48. Putnam P. (1953). Energy in the future. New York: D. Van Nostrand.
49. Rajbhandari A., Zhang F. (2018). Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset. Energy Economics, Vol. 69, pp. 128—139. https://doi.org/10.1016/j.eneco.2017.11.007
50. Serletis A., Xu L. (2016). Volatility and a century of energy market dynamics. Energy Economics, Vol. 55, pp. 1—9. https://doi.org/10.1016/j.eneco.2016.01.007
51. Smil V. (2010). Energy transitions: History, requirements, prospects. Santa Barbara, CA: Praeger Publishers.
52. Stern D., Kander A. (2011). The role of energy in the industrial revolution and modern economic growth. Center for Applied Macroeconomic Analysis. CAMA Working Paper Series, No. 2011-01, The Australian National University.
53. Van de Ven D.-J., Fouquet R. (2014). Historical energy price shocks and their changing effects on the economy. Centre for Climate Change Economics and Policy Working Paper, No. 171; Grantham Research Institute on Climate Change and the Environment Working Paper, No. 153.
54. Wrigley E. A. (2013). Energy and the English Industrial Revolution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371. 20110568. http://dx.doi.org/10.1098/rsta.2011.0568
Review
For citations:
Bashmakov I.A. Energy efficiency and economic growth. Voprosy Ekonomiki. 2019;(10):32-63. (In Russ.) https://doi.org/10.32609/0042-8736-2019-10-32-63