Preview

Voprosy Ekonomiki

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Statistics of Search Queries in Google as an Indicator of Financial Conditions

https://doi.org/10.32609/0042-8736-2011-11-79-93

Abstract

The article deals with opportunities and limits of Google search queries statistics as an indicator of financial conditions. The methodological issues and empirical results of the use of such indicators in foreign countries are discussed. It is shown that this statistics should be incorporated in an econometric model of individuals deposit growth in Russia. A composite indicator of financial situation allowing for shifts in financial expectations of individuals and entities is also proposed. It is proved that such measures may be good complements for traditional indicators to monitor financial conditions, which are based on the interview method.

About the Author

M. Stolbov
MGIMO University
Russian Federation


References

1. Канторович Г. Г. Анализ временных рядов. Лекция 7 // Экономический журнал ВШЭ. 2002. Т. 6, № 2. С. 268-273.

2. Райская Н. Н ., Сергиенко Я. В., Френкель А. А. Использование интегральных индексов в анализе циклических изменений российской экономики // Вопросы статистики. 2009. № 12. С. 8-12.

3. ЦБ РФ. Обзор банковского сектора Российской Федерации No 106 (август 2011 г.). http://cbr.ru/analytics/bank_system/obs_1108.pdf.

4. Askitas N., Zimmerman K. Google Econometrics and Unemployment Forecasting // Applied Economics Quarterly. 2009. Vol. 55, No 2. P. 107-120.

5. Choi H., Varian H. Predicting Initial Claims for Unemployment Benefits. Mimeo. 2009. April.

6. Choi H., Varian H. Predicting the Present with Google trends. Mimeo. April 2009.

7. Da Z., Engelberg J., Gao P. In Search of Attention // Journal of Finance. 2011. Vol. 66, No 5. P. 1461-1499.

8. Da Z., Engelberg J., Gao P. In Search of Fundamentals. Mimeo. 2011. March.

9. English W., Tsatsaronis K., Zoli E. Assessing the Predictive Power of Measures of Financial Conditions for Macroeconomic Variables // BIS Paper. 2005. No 22. P. 243-248.

10. Ghysels E., Sinko A., Valkanov R. MIDAS Regressions: Further Results and New Directions // Econometric Reviews. 2007. Vol. 26, No 1. P. 53-90.

11. Hatzius J., Hooper P., Mishkin F., Schoenholtz K., Watson M. Financial Conditions Indexes: A Fresh Look After the Financial Crisis // NBER Working Paper. 2010. No 16150.

12. Kholodilin K., Podstawski M., Siliverstov B. Do Google Searches Help in Nowcasting Private Consumption? A Real-Time Evidence for the US // KOF Swiss Economic Institute Working Paper. 2010. No 256.

13. Kholodilin K., Podstawski M., Siliverstov B., Burgi C. Google Searches as a Means of Nowcasts of Key Macroeconomic Variables // DIW Berlin Discussion Paper. 2009. No 46.

14. Preis T., Reith D., Stanley E. Complex Dynamics of our Economic Life on Different Scales: Insights from Search Engine Query Data // Philosophical Transactions of the Royal Society. 2010. Vol. 368, No 1933. P. 5707-5719.

15. Schmidt T., Vosen S. A Monthly Consumption Indicator for Germany Based on Internet Search Query Data // Ruhr Economic Paper. 2010. No 208.

16. Suhoy T. Query Indices and a 2008 Downturn: Israeli Data // Bank of Israel Technical Report. 2009. April.


Review

For citations:


Stolbov M. Statistics of Search Queries in Google as an Indicator of Financial Conditions. Voprosy Ekonomiki. 2011;(11):79-93. (In Russ.) https://doi.org/10.32609/0042-8736-2011-11-79-93

Views: 795


ISSN 0042-8736 (Print)